Foxtail millet(Setaria italica)growth was inhibited because of waterlogging stress,which has caused yield reduc-tion.ERF family plays an important role to plant adversity tolerance.In our study,we obtained 19,819 diff...Foxtail millet(Setaria italica)growth was inhibited because of waterlogging stress,which has caused yield reduc-tion.ERF family plays an important role to plant adversity tolerance.In our study,we obtained 19,819 differential expressed genes(DEGs)between the two treatments based on the RNA-seq sequencing of foxtail millet of water-logging stress.Furthermore,a total of 28 ERF family members were obtained,which have a complete open read-ing frame.We studied the evolution and function of SiERF family and how they affected the waterlogging tolerance.It was found that SiERF1A/B/C(GenBank ID:OR775217,OR775219,OR775218)and SiRAP2-12(GenBank ID:OR775216)have similar functions to the known waterlogging tolerance genes of other plants.Among them,the SiRAP2-12 expression was obviously significantly up-regulated in foxtail millet after 5d water-logging stress.After SiRAP2-12 was silenced,the activity of defense enzymes in millet decreased significantly.In details,superoxide dismutase(SOD),catalase(CAT)and peroxidase(POD),the osmotic regulator proline(Pro),and the activity of the anaerobic respiratory enzyme alcohol dehydrogenase(ADH)content were decreased by 78.61%,29.52%,79.95%,19.41%and 54.77%,respectively.In contrast,the relative electrical conductivity contents(REC),malondialdehyde(MDA),and hydrogen peroxide(H_(2)O_(2))of the foxtail millet subjected to virus-induced gene silencing clearly increased by 1.03-fold,36.09%,and 15.21%,respectively.The content of sodium(Na^(+))in the SiRAP2-12-silenced foxtail millet also increased,but that of potassium(K^(+))decreased.Interestingly,we found that ethylene content was significantly reduced.Further,the SiAOC1 expression,an essential gene for ethylene synthesis,was inhibited in SiRAP2-12-silenced foxtail millet after waterlogging stress.Taken together,we hypothesized that SiRAP2-12 might be a positive regulator of millet tolerance to waterlogging stress.展开更多
基金This research was supported by the China Agricultural Research System(CARS-06-14.5-A23)HAAFS Basic Science and Technology Contract Project(Grant No.HBNKY-BGZ-02)Technical System of Foxtail Millet Industry in Hebei Province.
文摘Foxtail millet(Setaria italica)growth was inhibited because of waterlogging stress,which has caused yield reduc-tion.ERF family plays an important role to plant adversity tolerance.In our study,we obtained 19,819 differential expressed genes(DEGs)between the two treatments based on the RNA-seq sequencing of foxtail millet of water-logging stress.Furthermore,a total of 28 ERF family members were obtained,which have a complete open read-ing frame.We studied the evolution and function of SiERF family and how they affected the waterlogging tolerance.It was found that SiERF1A/B/C(GenBank ID:OR775217,OR775219,OR775218)and SiRAP2-12(GenBank ID:OR775216)have similar functions to the known waterlogging tolerance genes of other plants.Among them,the SiRAP2-12 expression was obviously significantly up-regulated in foxtail millet after 5d water-logging stress.After SiRAP2-12 was silenced,the activity of defense enzymes in millet decreased significantly.In details,superoxide dismutase(SOD),catalase(CAT)and peroxidase(POD),the osmotic regulator proline(Pro),and the activity of the anaerobic respiratory enzyme alcohol dehydrogenase(ADH)content were decreased by 78.61%,29.52%,79.95%,19.41%and 54.77%,respectively.In contrast,the relative electrical conductivity contents(REC),malondialdehyde(MDA),and hydrogen peroxide(H_(2)O_(2))of the foxtail millet subjected to virus-induced gene silencing clearly increased by 1.03-fold,36.09%,and 15.21%,respectively.The content of sodium(Na^(+))in the SiRAP2-12-silenced foxtail millet also increased,but that of potassium(K^(+))decreased.Interestingly,we found that ethylene content was significantly reduced.Further,the SiAOC1 expression,an essential gene for ethylene synthesis,was inhibited in SiRAP2-12-silenced foxtail millet after waterlogging stress.Taken together,we hypothesized that SiRAP2-12 might be a positive regulator of millet tolerance to waterlogging stress.