NGC 1266 is a lenticular galaxy(S0)hosting an active galactic nucleus(AGN),and known to contain a large amount of shocked gas.We compare the luminosity ratio of mid-J CO lines to IR continuum with star-forming galaxie...NGC 1266 is a lenticular galaxy(S0)hosting an active galactic nucleus(AGN),and known to contain a large amount of shocked gas.We compare the luminosity ratio of mid-J CO lines to IR continuum with star-forming galaxies(SFGs),and then model the CO spectral line energy distribution(SLED).We confirm that in the mid-and high-J regions(J_(up)=4-13),the C-type shock(v_(s)=25 km s^(-1),n_(H)=5×10^(4)cm^(-3))can reproduce the CO observations well.The galaxy spectral energy distribution(SED)is constructed and modeled by the code X-CIGALE and obtains a set of physical parameters including the star formation rate(SFR,1.17±0.47 M_(⊙)yr^(-1)).Also,our work provides SFR derivation of[C II]from the neutral hydrogen regions only(1.38±0.14 M_(⊙)yr^(-1)).Previous studies have illusive conclusions on the AGN or starburst nature of the NGC 1266 nucleus.Our SED model shows that the hidden AGN in the system is intrinsically low-luminosity,consequently the infrared luminosity of the AGN does not reach the expected level.Archival data from Nu STAR hard X-ray observations in the 3-79 keV band shows a marginal detection,disfavoring presence of an obscured luminous AGN and implying that a compact starburst is more likely dominant for the NGC 1266 nucleus.展开更多
基金supported by the National Natural Science Foundation of China(NSFC Grant Nos.12033004,U1831205,12173079 and 12221003)the science research grants from the China Manned Space Project with Nos.CMS-CSST-2021A06 and CMS-CSST-2021-B02。
文摘NGC 1266 is a lenticular galaxy(S0)hosting an active galactic nucleus(AGN),and known to contain a large amount of shocked gas.We compare the luminosity ratio of mid-J CO lines to IR continuum with star-forming galaxies(SFGs),and then model the CO spectral line energy distribution(SLED).We confirm that in the mid-and high-J regions(J_(up)=4-13),the C-type shock(v_(s)=25 km s^(-1),n_(H)=5×10^(4)cm^(-3))can reproduce the CO observations well.The galaxy spectral energy distribution(SED)is constructed and modeled by the code X-CIGALE and obtains a set of physical parameters including the star formation rate(SFR,1.17±0.47 M_(⊙)yr^(-1)).Also,our work provides SFR derivation of[C II]from the neutral hydrogen regions only(1.38±0.14 M_(⊙)yr^(-1)).Previous studies have illusive conclusions on the AGN or starburst nature of the NGC 1266 nucleus.Our SED model shows that the hidden AGN in the system is intrinsically low-luminosity,consequently the infrared luminosity of the AGN does not reach the expected level.Archival data from Nu STAR hard X-ray observations in the 3-79 keV band shows a marginal detection,disfavoring presence of an obscured luminous AGN and implying that a compact starburst is more likely dominant for the NGC 1266 nucleus.