12Cr ferritic/martensitic steels with 0, 0.1 wt%, 0.2 wt% and 0.3 wt% theoretical yttrium(Y) additions were fabricated by vacuum inducting melting and casting method. Solubilities of Y in the 12Cr steels are0.027, 0.0...12Cr ferritic/martensitic steels with 0, 0.1 wt%, 0.2 wt% and 0.3 wt% theoretical yttrium(Y) additions were fabricated by vacuum inducting melting and casting method. Solubilities of Y in the 12Cr steels are0.027, 0.078 and 0.17 for 12Cr-0.1 Y, 12Cr-0.2 Y and 12Cr-0.3 Y, respectively. Phase transformations and microstructure characteristics under different heat-treatment schedules were investigated. The starting temperature of ferrite-to-austenite transformation A^(c1) are maintained about 850℃, but the finishing temperature of ferrite-to-austenite transformation A^(c3) are about 950, 970, 980 and 1000℃ for 12Cr-0 Y,12Cr-0.1 Y, 12Cr-0.2 Y and 12Cr-0.3 Y, respectively, which indicates that A^(c3) increases gradually with the addition of Y. Martensite accompanied with a few δ-ferrite is the dominant structure in all the steels. The amount of δ-ferrite shows a strong dependence with the Y content and austenitizing temperature. Area fraction of δ-ferrite increases with the content of Y, which is the ferrite favouring element. The minimum amount of δ-ferrite are achieved at 950℃ for 12Cr-0 Y, 12Cr-0.1 Y, 12Cr-0.2 Y and 1000℃ for 12Cr-0.3 Y.Besides, more carbides precipitate along the martensite laths and grain boundaries in the Y-bearing steel due to the redistribution of carbon between austenite and ferrite resulting from the ferrite favouring element of Y.展开更多
In view of developing novel alloys for applications in supercritical water-cooled reactor fuel cladding and in-core components, a 12%Cr reduced activation ferrite/martensite(RAFM) steel with good corrosion resistance ...In view of developing novel alloys for applications in supercritical water-cooled reactor fuel cladding and in-core components, a 12%Cr reduced activation ferrite/martensite(RAFM) steel with good corrosion resistance and irradiation performance was developed. V and Ta were added to form fine MX type carbonitrides and enhance the high temperature creep rupture strength. Microstructure stability of the steel during long-term aging at 650 C was studied experimentally combined with the simulation of ThermoCalc and DICTRA software. The results show that the precipitates in the steel during long-term aging contain M23C6, MX and Laves phase. M23C6 carbides play a major role in the stabilization of the tempered martensite lath structure by exerting a large Zener pinning force as compared with MX and Laves phase.Adding V and Ta in the steel can not only promote MX precipitation, but also refine M23C6 carbides and thus improve the thermal stability of lath/subgrains, which is beneficial to the improvement of high temperature microstructure stability of the 12%Cr RAFM steel.展开更多
By means of riM-190 hot-stage microscopy,the in situ observation of α-β transformation in 12Cr2MoWVTiB steel has been carried out.The sequence of the growth of ferritic needles composing bainitic basket has also bee...By means of riM-190 hot-stage microscopy,the in situ observation of α-β transformation in 12Cr2MoWVTiB steel has been carried out.The sequence of the growth of ferritic needles composing bainitic basket has also been determined.According to the crystallographic analy- sis a multislip system transform model concerning the formation of basket has been proposed.展开更多
基金Project supported by the National Key Research and Development Program of China(2017YFB0702400)
文摘12Cr ferritic/martensitic steels with 0, 0.1 wt%, 0.2 wt% and 0.3 wt% theoretical yttrium(Y) additions were fabricated by vacuum inducting melting and casting method. Solubilities of Y in the 12Cr steels are0.027, 0.078 and 0.17 for 12Cr-0.1 Y, 12Cr-0.2 Y and 12Cr-0.3 Y, respectively. Phase transformations and microstructure characteristics under different heat-treatment schedules were investigated. The starting temperature of ferrite-to-austenite transformation A^(c1) are maintained about 850℃, but the finishing temperature of ferrite-to-austenite transformation A^(c3) are about 950, 970, 980 and 1000℃ for 12Cr-0 Y,12Cr-0.1 Y, 12Cr-0.2 Y and 12Cr-0.3 Y, respectively, which indicates that A^(c3) increases gradually with the addition of Y. Martensite accompanied with a few δ-ferrite is the dominant structure in all the steels. The amount of δ-ferrite shows a strong dependence with the Y content and austenitizing temperature. Area fraction of δ-ferrite increases with the content of Y, which is the ferrite favouring element. The minimum amount of δ-ferrite are achieved at 950℃ for 12Cr-0 Y, 12Cr-0.1 Y, 12Cr-0.2 Y and 1000℃ for 12Cr-0.3 Y.Besides, more carbides precipitate along the martensite laths and grain boundaries in the Y-bearing steel due to the redistribution of carbon between austenite and ferrite resulting from the ferrite favouring element of Y.
基金supported by the National Basic Research Program of China (Grant No. 2007CB209801)the National Natural Science Fundation of China (Grant No. 51371030)the National High Technology Research and Development Program of China (Grant No. 2013AA031601)
文摘In view of developing novel alloys for applications in supercritical water-cooled reactor fuel cladding and in-core components, a 12%Cr reduced activation ferrite/martensite(RAFM) steel with good corrosion resistance and irradiation performance was developed. V and Ta were added to form fine MX type carbonitrides and enhance the high temperature creep rupture strength. Microstructure stability of the steel during long-term aging at 650 C was studied experimentally combined with the simulation of ThermoCalc and DICTRA software. The results show that the precipitates in the steel during long-term aging contain M23C6, MX and Laves phase. M23C6 carbides play a major role in the stabilization of the tempered martensite lath structure by exerting a large Zener pinning force as compared with MX and Laves phase.Adding V and Ta in the steel can not only promote MX precipitation, but also refine M23C6 carbides and thus improve the thermal stability of lath/subgrains, which is beneficial to the improvement of high temperature microstructure stability of the 12%Cr RAFM steel.
文摘By means of riM-190 hot-stage microscopy,the in situ observation of α-β transformation in 12Cr2MoWVTiB steel has been carried out.The sequence of the growth of ferritic needles composing bainitic basket has also been determined.According to the crystallographic analy- sis a multislip system transform model concerning the formation of basket has been proposed.