The 137Cs vertical distributions in uncultivated and cultivated soils, developed from Quaternary red clay, granite, argillaceous shale, and red sandstone, were studied to develop reliable guidelines for selecting refe...The 137Cs vertical distributions in uncultivated and cultivated soils, developed from Quaternary red clay, granite, argillaceous shale, and red sandstone, were studied to develop reliable guidelines for selecting reference sites in southeastern China, which is dominated by strong acidic and/or clay-textured soils, and examine their reliability by comparing them to the reported 137Cs reference inventory data to see whether they agreed with the global distribution pattern. It was observed that a relatively high proportion of 137Cs was concentrated in the surface layers of soils with relatively high clay content. In the paddy soils developed from granite more 137Cs penetrated to depths below the plow layer (about 45.3%), when compared to those from the other three parent materials. The relatively low soil 137Cs inventories on crests excluded using the crest as the 137Cs reference site; instead the paddy field on the hillock plain was selected. Furthermore, within a specific county characterized by great systematic spatial variations of rainfall and topography across the landscape, a significant (P<0.01) and positive linear relationship (r2=0.81) between local 137Cs inventory and corresponding local annual rainfall was observed. Thus, for areas with large variations in rainfall, a single uniform value of local 137Cs reference inventory should be used with caution.展开更多
In isotope 137 Cs tracing studies, it is a premise to determine suitable 137 Cs reference inventory(CRI) plots and the CRI values. Owing to the heterogeneous spatial distribution of 137 Cs deposition in the ground a...In isotope 137 Cs tracing studies, it is a premise to determine suitable 137 Cs reference inventory(CRI) plots and the CRI values. Owing to the heterogeneous spatial distribution of 137 Cs deposition in the ground and diverse, or even irregular, operations in sampling and testing procedures, CRI determination is usually faced with many difficulties and uncertainties. In addition, more difficulties occur in an investigation of a large-scale region because of time constraints and measurement cost limitations. In this study, traditional CRI acquiring methods were summarized first, and then a new complex scheme was established, involving seven core steps and coupling the model estimate and sample measurement. The above CRI determination methodology was implemented in the central-eastern Inner Mongolia Plateau. The case study results showed that the CRI in the dark chestnut soil sub-region, located in the east and south of Xing'an City, exhibited 2447 Bq·m–2; the CRI in the aeolian sandy soil sub-region, positioned in the south central Tongliao City and central Chifeng City, showed 2430 Bq·m–2; the CRI in the sandy chernozem soil sub-region, situated in the northwestern Chifeng City, presented 2384 Bq·m–2; and the CRI in the chestnut soil sub-region, in the southern Xilin Gol City, was 2368 Bq·m–2. The newly proposed CRI determination scheme was proved effective, and the determined CRI plots and CRI values were convincing. The methodology offered a framework for 137 Cs tracing studies in large-scale regions or long-distance transects.展开更多
土壤侵蚀是关系人类生存与可持续发展的重大环境问题。20世纪60年代以来,Cs-137作为一种人工放射性示踪核素,被广泛应用于土壤侵蚀及堆积研究。而准确估算区域Cs-137背景值(Cs-137 Reference Inventory,CRI)是应用Cs-137开展土壤侵蚀...土壤侵蚀是关系人类生存与可持续发展的重大环境问题。20世纪60年代以来,Cs-137作为一种人工放射性示踪核素,被广泛应用于土壤侵蚀及堆积研究。而准确估算区域Cs-137背景值(Cs-137 Reference Inventory,CRI)是应用Cs-137开展土壤侵蚀研究的前提条件,其结果直接影响土壤侵蚀速率结果的准确性和可靠性。基于现有文献资料中获取的中国大陆102个CRI实测数据,以及全球降水气候中心提供的降水量再分析资料(空间分辨率2.5°×2.5°、0.5°×0.5°,1981-2010年),在借鉴Walling&He模型(Walling&He Model,WHM)和Michio Aoyama模型(Michio Aoyama Model,MAM)的基础上,本文建立了中国大陆CRI修正模型(Modified CRI Model for the Mainland of China,MCM),并利用Kriging/Cokriging插值方法计算了中国大陆CRI的空间分布。模型评估与对比分析表明,MCM模拟值与实测值大致吻合,且总体高于WHM和MAM模拟值,MCM能对中国大陆CRI进行较高分辨率、较高精度的模拟。模拟结果显示,中国大陆CRI的范围为141~12123 Bq/m^2,在东北及新疆局部地区达到最大值,最小值主要集中于25°N以南地带。除新疆局部地区外,中国大陆CRI分布整体呈现自西向东,同纬度地区随降水量增加而增加的特点,而纬向上主要呈现随纬度增加而增加的特点。此外,大尺度大气流场、再悬浮过程、局部核试验等因素增加了中国大陆CRI分布的不均匀性。展开更多
基金Project supported by the National Key Basic Research Support Foundation of China (No. G1999011801) the National Natural Science Foundation of China (No. 49973027)and Japan Society for the Promotion of Science (No. P04575).
文摘The 137Cs vertical distributions in uncultivated and cultivated soils, developed from Quaternary red clay, granite, argillaceous shale, and red sandstone, were studied to develop reliable guidelines for selecting reference sites in southeastern China, which is dominated by strong acidic and/or clay-textured soils, and examine their reliability by comparing them to the reported 137Cs reference inventory data to see whether they agreed with the global distribution pattern. It was observed that a relatively high proportion of 137Cs was concentrated in the surface layers of soils with relatively high clay content. In the paddy soils developed from granite more 137Cs penetrated to depths below the plow layer (about 45.3%), when compared to those from the other three parent materials. The relatively low soil 137Cs inventories on crests excluded using the crest as the 137Cs reference site; instead the paddy field on the hillock plain was selected. Furthermore, within a specific county characterized by great systematic spatial variations of rainfall and topography across the landscape, a significant (P<0.01) and positive linear relationship (r2=0.81) between local 137Cs inventory and corresponding local annual rainfall was observed. Thus, for areas with large variations in rainfall, a single uniform value of local 137Cs reference inventory should be used with caution.
基金National Key Basic Research Program of China(973 Program),No.2010CB950904 National Natural Science Foundation of China,No.40971223 Knowledge Innovation Project of CAS,No.KZCX2-EW-306
文摘In isotope 137 Cs tracing studies, it is a premise to determine suitable 137 Cs reference inventory(CRI) plots and the CRI values. Owing to the heterogeneous spatial distribution of 137 Cs deposition in the ground and diverse, or even irregular, operations in sampling and testing procedures, CRI determination is usually faced with many difficulties and uncertainties. In addition, more difficulties occur in an investigation of a large-scale region because of time constraints and measurement cost limitations. In this study, traditional CRI acquiring methods were summarized first, and then a new complex scheme was established, involving seven core steps and coupling the model estimate and sample measurement. The above CRI determination methodology was implemented in the central-eastern Inner Mongolia Plateau. The case study results showed that the CRI in the dark chestnut soil sub-region, located in the east and south of Xing'an City, exhibited 2447 Bq·m–2; the CRI in the aeolian sandy soil sub-region, positioned in the south central Tongliao City and central Chifeng City, showed 2430 Bq·m–2; the CRI in the sandy chernozem soil sub-region, situated in the northwestern Chifeng City, presented 2384 Bq·m–2; and the CRI in the chestnut soil sub-region, in the southern Xilin Gol City, was 2368 Bq·m–2. The newly proposed CRI determination scheme was proved effective, and the determined CRI plots and CRI values were convincing. The methodology offered a framework for 137 Cs tracing studies in large-scale regions or long-distance transects.
文摘土壤侵蚀是关系人类生存与可持续发展的重大环境问题。20世纪60年代以来,Cs-137作为一种人工放射性示踪核素,被广泛应用于土壤侵蚀及堆积研究。而准确估算区域Cs-137背景值(Cs-137 Reference Inventory,CRI)是应用Cs-137开展土壤侵蚀研究的前提条件,其结果直接影响土壤侵蚀速率结果的准确性和可靠性。基于现有文献资料中获取的中国大陆102个CRI实测数据,以及全球降水气候中心提供的降水量再分析资料(空间分辨率2.5°×2.5°、0.5°×0.5°,1981-2010年),在借鉴Walling&He模型(Walling&He Model,WHM)和Michio Aoyama模型(Michio Aoyama Model,MAM)的基础上,本文建立了中国大陆CRI修正模型(Modified CRI Model for the Mainland of China,MCM),并利用Kriging/Cokriging插值方法计算了中国大陆CRI的空间分布。模型评估与对比分析表明,MCM模拟值与实测值大致吻合,且总体高于WHM和MAM模拟值,MCM能对中国大陆CRI进行较高分辨率、较高精度的模拟。模拟结果显示,中国大陆CRI的范围为141~12123 Bq/m^2,在东北及新疆局部地区达到最大值,最小值主要集中于25°N以南地带。除新疆局部地区外,中国大陆CRI分布整体呈现自西向东,同纬度地区随降水量增加而增加的特点,而纬向上主要呈现随纬度增加而增加的特点。此外,大尺度大气流场、再悬浮过程、局部核试验等因素增加了中国大陆CRI分布的不均匀性。