Vertisols,which are mainly developed on fiuvial and lacustrine deposits and basalt,are extensively distributed in China. 66 samples of them for radiocarbon dating were collected across 5 provinces and 1 autonomous reg...Vertisols,which are mainly developed on fiuvial and lacustrine deposits and basalt,are extensively distributed in China. 66 samples of them for radiocarbon dating were collected across 5 provinces and 1 autonomous region, ranging from warm-temperate to subtropical and tropical zones in China.The soil organic matter was dated via surfaCe horizon, black soil horizon and dark-colour horizon of the vertisols,whereas carbonate through calcareous concretions and dispersed carbonate in soil profile using radiocarbon method. The present article elucidates the dates of genetic horizons,and of surfaCe and buried vertisols as well. 14C dating indicates that the surface vertisols were formed during the end of the late Pleistocene,ca.15600 years ago.Correlation between depth of sampling and measured 14C age shows that age characteristics of the vertisols of China are close to those of West Germany,Italy,Turnisia,Australia and Argeentia. However, two buried vertisols developed on fluvial and lacustrine deposits were formed during different geological periods.The buried soils in warm-temperate zone were formed in the mid Holocene, while those in subtropics were buried at 12930 years B.P.,and formed in the end of the late Pleistocene.展开更多
The accurately determining the lake ^14C reservoir age has a crucial significance for climatic reconstruction. In this study, the optically stimulated luminescence (OSL) dating method is employed to date samples fro...The accurately determining the lake ^14C reservoir age has a crucial significance for climatic reconstruction. In this study, the optically stimulated luminescence (OSL) dating method is employed to date samples from highstand lacustrine sediments, palaeoshoreline, fluvial terrace, and the alluvial fan of the Heihai Lake catchment. Accelerator mass spectrometry (AMS) 14C dating was also used to date fossil plants from highstand lacustrine sediments. Based on the calculations of linear regression with OSL against radiocarbon ages for same layers of two sections, the quantitative ^14C reservoir ages were estimated to lie between 3 353 and 3 464 yr during the 1.8 to 2.4 ka, which showed temporal variation. The sources of old carbon are the dissolution of carbonate bedrocks distributed along the Kunlun Mountain. The OSL ages of the different members of the hydatogen sedimentary system at Heihai Lake catchment indicate that a stronger hydrologic condition occurred from 3.0±0.2 to 1.8±0.2 ka, with a maximum lake level of 9 m higher than present. This humid stage was widely recorded in different sediments on the QTP and Chinese Loess Plateau (CLP), indicating its broad synchronicity across the Asian Summer Monsoon region. The enhanced East Asian Summer Monsoon (EASM) and the Indian Summer Monsoon (ISM) resulted in the increase of moisture availability for the Heihai Lake area during this stage.展开更多
Based on total carbon(C) and C isotopes in sediment cores,sedimentary organic carbon(SOC) was quantified in three types of mangrove sites(barren flat sites without mangroves,mangrove plantations,and natural mangrove f...Based on total carbon(C) and C isotopes in sediment cores,sedimentary organic carbon(SOC) was quantified in three types of mangrove sites(barren flat sites without mangroves,mangrove plantations,and natural mangrove forests),which were considered to represent a continuum from least restored to most restored sites in southern China.SOC densities in the barren sites,plantations,and natural forests were 90,170 and 288 Mg ha 1,respectively.We inferred that mangrove restoration increased SOC accumulation in coastal areas.At 0-70 cm depth,SOC δ 13 C values in both mangrove sites ranged from 27.37‰ to 23.07‰ and exhibited gradual enrichment with depth.In contrast,the values in the barren flat sites remained around 22.19‰ and fluctuated slightly with depth.At 0-60 cm,the 14 C ages of the SOC in the barren flat site,the natural mangrove site,and the artificial mangrove site ranged from 1 397 to 2 608,255 to 2 453,and 391 to 2 512 years BP,respectively.In both types of mangrove sites but not in the barren flat sites,the enrichment of δ 13 C with depth was related to increases in SOC decay and SOC age with depth.According to analysis of 14 C age,much of the mangrove-derived C was transported and stored at 0-60 cm depth under anaerobic conditions in both mangrove sites.The sediments of mangrove forests in southern China sequester large quantities of SOC during mangrove restoration.展开更多
文摘Vertisols,which are mainly developed on fiuvial and lacustrine deposits and basalt,are extensively distributed in China. 66 samples of them for radiocarbon dating were collected across 5 provinces and 1 autonomous region, ranging from warm-temperate to subtropical and tropical zones in China.The soil organic matter was dated via surfaCe horizon, black soil horizon and dark-colour horizon of the vertisols,whereas carbonate through calcareous concretions and dispersed carbonate in soil profile using radiocarbon method. The present article elucidates the dates of genetic horizons,and of surfaCe and buried vertisols as well. 14C dating indicates that the surface vertisols were formed during the end of the late Pleistocene,ca.15600 years ago.Correlation between depth of sampling and measured 14C age shows that age characteristics of the vertisols of China are close to those of West Germany,Italy,Turnisia,Australia and Argeentia. However, two buried vertisols developed on fluvial and lacustrine deposits were formed during different geological periods.The buried soils in warm-temperate zone were formed in the mid Holocene, while those in subtropics were buried at 12930 years B.P.,and formed in the end of the late Pleistocene.
基金supported by the National Natural Science Foundation of China(No.41401008)West Light Foundation of the Chinese Academy of Sciences(No.Y412021005)+1 种基金Natural Science Foundation of Qinghai Province(No.2016-ZJ-926Q)the instrument function development program of the Chinese Academy of Sciences(No.Y410041013)
文摘The accurately determining the lake ^14C reservoir age has a crucial significance for climatic reconstruction. In this study, the optically stimulated luminescence (OSL) dating method is employed to date samples from highstand lacustrine sediments, palaeoshoreline, fluvial terrace, and the alluvial fan of the Heihai Lake catchment. Accelerator mass spectrometry (AMS) 14C dating was also used to date fossil plants from highstand lacustrine sediments. Based on the calculations of linear regression with OSL against radiocarbon ages for same layers of two sections, the quantitative ^14C reservoir ages were estimated to lie between 3 353 and 3 464 yr during the 1.8 to 2.4 ka, which showed temporal variation. The sources of old carbon are the dissolution of carbonate bedrocks distributed along the Kunlun Mountain. The OSL ages of the different members of the hydatogen sedimentary system at Heihai Lake catchment indicate that a stronger hydrologic condition occurred from 3.0±0.2 to 1.8±0.2 ka, with a maximum lake level of 9 m higher than present. This humid stage was widely recorded in different sediments on the QTP and Chinese Loess Plateau (CLP), indicating its broad synchronicity across the Asian Summer Monsoon region. The enhanced East Asian Summer Monsoon (EASM) and the Indian Summer Monsoon (ISM) resulted in the increase of moisture availability for the Heihai Lake area during this stage.
基金Supported by the National Basic Research Program (973 Program) of China (No. 2009CB421101)the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KSCX2-SW-132)the Guangdong Sci-Tech Planning Project(Nos. 2008A030203007 and 2010B060200039)
文摘Based on total carbon(C) and C isotopes in sediment cores,sedimentary organic carbon(SOC) was quantified in three types of mangrove sites(barren flat sites without mangroves,mangrove plantations,and natural mangrove forests),which were considered to represent a continuum from least restored to most restored sites in southern China.SOC densities in the barren sites,plantations,and natural forests were 90,170 and 288 Mg ha 1,respectively.We inferred that mangrove restoration increased SOC accumulation in coastal areas.At 0-70 cm depth,SOC δ 13 C values in both mangrove sites ranged from 27.37‰ to 23.07‰ and exhibited gradual enrichment with depth.In contrast,the values in the barren flat sites remained around 22.19‰ and fluctuated slightly with depth.At 0-60 cm,the 14 C ages of the SOC in the barren flat site,the natural mangrove site,and the artificial mangrove site ranged from 1 397 to 2 608,255 to 2 453,and 391 to 2 512 years BP,respectively.In both types of mangrove sites but not in the barren flat sites,the enrichment of δ 13 C with depth was related to increases in SOC decay and SOC age with depth.According to analysis of 14 C age,much of the mangrove-derived C was transported and stored at 0-60 cm depth under anaerobic conditions in both mangrove sites.The sediments of mangrove forests in southern China sequester large quantities of SOC during mangrove restoration.