Novel tetralin compounds were designed and synthesized on the three-dimensional model of lanosterol 14α-demethylase of Candida albicans. All of the lead compounds exhibited potent antifungal activities, especially co...Novel tetralin compounds were designed and synthesized on the three-dimensional model of lanosterol 14α-demethylase of Candida albicans. All of the lead compounds exhibited potent antifungal activities, especially compounds 16, 20. The mode of the action of the lead compounds was different from that of azoles. The present study affords the possibility to develop novel antifungal agents that specifically interact with the amino acid residues in the active site and avoid the serious toxicity arising from coordination binding with the heme of mammalian P450s.展开更多
禾谷镰孢菌(Fusarium gra minearum)是引起小麦赤霉病的主要病原真菌,其细胞色素P450甾醇14α-脱甲基酶(CYP51)是唑类杀菌剂作用的主要靶标蛋白。本文在简要介绍小麦赤霉病在中国发生危害与防控现状的基础上,重点探讨了甾醇14α-脱甲基...禾谷镰孢菌(Fusarium gra minearum)是引起小麦赤霉病的主要病原真菌,其细胞色素P450甾醇14α-脱甲基酶(CYP51)是唑类杀菌剂作用的主要靶标蛋白。本文在简要介绍小麦赤霉病在中国发生危害与防控现状的基础上,重点探讨了甾醇14α-脱甲基酶的结构及功能、病原真菌对唑类杀菌剂的抗药性研究现状和抗药性治理研究进展,以期对小麦赤霉病的高效防治、减少或延缓抗药性的发生以及对抗药性的治理提供新的思路。展开更多
基金supported by the National Natural Science Foundation of China(No.30572257)
文摘Novel tetralin compounds were designed and synthesized on the three-dimensional model of lanosterol 14α-demethylase of Candida albicans. All of the lead compounds exhibited potent antifungal activities, especially compounds 16, 20. The mode of the action of the lead compounds was different from that of azoles. The present study affords the possibility to develop novel antifungal agents that specifically interact with the amino acid residues in the active site and avoid the serious toxicity arising from coordination binding with the heme of mammalian P450s.
文摘禾谷镰孢菌(Fusarium gra minearum)是引起小麦赤霉病的主要病原真菌,其细胞色素P450甾醇14α-脱甲基酶(CYP51)是唑类杀菌剂作用的主要靶标蛋白。本文在简要介绍小麦赤霉病在中国发生危害与防控现状的基础上,重点探讨了甾醇14α-脱甲基酶的结构及功能、病原真菌对唑类杀菌剂的抗药性研究现状和抗药性治理研究进展,以期对小麦赤霉病的高效防治、减少或延缓抗药性的发生以及对抗药性的治理提供新的思路。