The microstructures and the tensile mechanical properties in the rolling plane of 1545 aluminum alloy sheet at different orientations with respect to the rolling direction were studied by means of tensile test, X-ray ...The microstructures and the tensile mechanical properties in the rolling plane of 1545 aluminum alloy sheet at different orientations with respect to the rolling direction were studied by means of tensile test, X-ray diffractometer(XRD), optical microscope and transmission electron microscope. The in-plane anisotropy of tensile mechanical properties was calculated and the inverse pole figures of the rolling plane, transversal section and longitudinal section were obtained by Harris method. The results show that the 1545 Al alloy sheet has remarkable in-plane anisotropy of mechanical properties and the main texture component is {110}〈112〉 texture. On the basis of the model that regards the sheet containing only {110}〈112〉 texture as a monocrystal, the relationship of in-plane anisotropy and the anisotropy of crystallography was analyzed. The study shows that it is the combined effects of the anisotropy of crystallography and microstructures that cause the in-plane anisotropy of mechanical properties, but the main cause is the crystallographic texture.展开更多
基金Project (G19999064911) supported by the National Key Fundamental Research Development Program of China
文摘The microstructures and the tensile mechanical properties in the rolling plane of 1545 aluminum alloy sheet at different orientations with respect to the rolling direction were studied by means of tensile test, X-ray diffractometer(XRD), optical microscope and transmission electron microscope. The in-plane anisotropy of tensile mechanical properties was calculated and the inverse pole figures of the rolling plane, transversal section and longitudinal section were obtained by Harris method. The results show that the 1545 Al alloy sheet has remarkable in-plane anisotropy of mechanical properties and the main texture component is {110}〈112〉 texture. On the basis of the model that regards the sheet containing only {110}〈112〉 texture as a monocrystal, the relationship of in-plane anisotropy and the anisotropy of crystallography was analyzed. The study shows that it is the combined effects of the anisotropy of crystallography and microstructures that cause the in-plane anisotropy of mechanical properties, but the main cause is the crystallographic texture.