期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Geometry of 2×2 Hermitian matrices over any division ring 被引量:1
1
作者 HUANG LiPing School of Mathematics and Computing Science,Changsha University of Science and Technology,Changsha 410004,China 《Science China Mathematics》 SCIE 2009年第11期2404-2418,共15页
Let D be a division ring with an involution ?, $ \mathcal{H}_2 $ (D) be the set of 2 × 2 Hermitian matrices over D. Let ad(A,B) = rank(A ? B) be the arithmetic distance between A, B ∈ $ \mathcal{H}_2 $ (D). In t... Let D be a division ring with an involution ?, $ \mathcal{H}_2 $ (D) be the set of 2 × 2 Hermitian matrices over D. Let ad(A,B) = rank(A ? B) be the arithmetic distance between A, B ∈ $ \mathcal{H}_2 $ (D). In this paper, the fundamental theorem of the geometry of 2 × 2 Hermitian matrices over D (char(D) ≠ = 2) is proved: if φ: $ \mathcal{H}_2 $ (D) → $ \mathcal{H}_2 $ (D) is the adjacency preserving bijective map, then φ is of the form φ(X) = $ ^t \bar P $ X σ P +φ(0), where P ∈ GL 2(D), σ is a quasi-automorphism of D. The quasi-automorphism of D is studied, and further results are obtained. 展开更多
关键词 division ring with involution Hermitian matrices geometry of matrices quasiautomorphism 15A57 15a33 15A04 16W20 51D20
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部