A field experiment was conducted to investigate the fate of ^15N-labeled urea and its residual effect under the winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) rotation system on the North China...A field experiment was conducted to investigate the fate of ^15N-labeled urea and its residual effect under the winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) rotation system on the North China Plain. Compared to a conventional application rate of 360 kg N ha^-1 (N360), a reduced rate of 120 kg N ha^-1 (N120) led to a significant increase (P 〈 0.05) in wheat yield and no significant differences were found for maize. However, in the 0-100 cm soil profile at harvest, compared with N360, N120 led to significant decreases (P 〈 0.05) of percent residual N and percent unaccounted-for N, which possibly reflected losses from the managed system. Of the residual fertilizer N in the soil profile, 25.6%-44.7% and 20.7%-38.2% for N120 and N360, respectively, were in the organic N pool, whereas 0.3%-3.0% and 11.2%-24.4%, correspondingly, were in the nitrate pool, indicating a higher potential for leaching loss associated with application at the conventional rate. Recovery of residual N in the soil profile by succeeding crops was less than 7.5% of the applied N. For N120, total soil N balance was negative; however, there was still considerable mineral N (NH4^+-N and NO3^--N) in the soil profile after harvest. Therefore, N120 could be considered ngronomically acceptable in the short run, but for long-term sustainability, the N rate should be recommended based on a soil mineral N test and a plant tissue nitrate test to maintain the soil fertility.展开更多
Ammonia volatilization loss and ^15N balance were studied in a rice field at three different stages after urea application in Taihu Lake area with a micrometeorological technique. Factors such as climate and the NH4^...Ammonia volatilization loss and ^15N balance were studied in a rice field at three different stages after urea application in Taihu Lake area with a micrometeorological technique. Factors such as climate and the NH4^+-N concentration in the field floodwater affecting ammonia loss were also investigated. Results show that the ammonia loss by volatilization accounted for 18.6%-38.7% of urea applied at different stages, the greatest loss took place when urea was applied at the tillering stage, the smallest at the ear bearing stage, and the intermediate loss at the basal stage. The greatest loss took place within 7 d following the fertilizer application. Ammonia volatilization losses at three fertilization stages were significantly correlated with the ammonium concentration in the field floodwater after the fertilizer was applied. ^15N balance experiment indicated that the use efficiency of urea by rice plants ranged between 24.4% and 28.1%. At the early stage of rice growth, the fertilizer nitrogen use efficiency was rather low, only about 12%. The total amount of nitrogen lost from different fertilization stages in the rice field was 44.1%-54.4%, and the ammonia volatilization loss was 25.4%-33.3%. Reducing ammonia loss is an important treatment for improving N use efficiency.展开更多
Three goats were fed with ^15N-labelled rice straw to study the characteristics of digestion,assimilation,transformation and excretion of C and N compounds from rice straw.It was shown that the amount of ^15N transfor...Three goats were fed with ^15N-labelled rice straw to study the characteristics of digestion,assimilation,transformation and excretion of C and N compounds from rice straw.It was shown that the amount of ^15N transformed into the bodies of the two slaughtered goats accounted for 38.5 and 23.6% of the total amount of ^15N deposition of the experimental diet taken by each goat.The ^15N excreted through the feces and urine for the three goats accounted for 34.8,33.2 and 33.9% of the total amount of ^15N deposition in the feed of the 3 goats.The recovery of total ^15N for the two slaughtered goats were 73.3 and 57.5%,with the corresponding rates of ^15N loss 26.7 and 42.5% respectively.The digestibilities of total amino acids for Goats 1 and 3 were 68.7 and 54.0%,and the digestibilties of carbohydrates for the two goats were 74.8 and 67.7% respectively.展开更多
The objective of this study was to determine the efficiency of different plant systems in capturing deep soil nitrate (NO3-) to reduce NO3- leaching in a field plot experiment using 15N labelling. The study was cond...The objective of this study was to determine the efficiency of different plant systems in capturing deep soil nitrate (NO3-) to reduce NO3- leaching in a field plot experiment using 15N labelling. The study was conducted on a calcareous alluvial soil on the North China Plains and the plant systems evaluated included alfalfa (Medicago sativa), American black poplar (Populus nigra) and cocksfoot (Dactylis). ^15N-labelled N fertilizer was injected to 90 cm depth to determine the recovery of ^15N by the plants. With conventional water and nutrient management, the total recovery of ^15N-labeled NO3--N was 23.4% by alfalfa after two consecutive growth years. The recovery was significantly higher than those by American black poplar (12.3%) and cocksfoot (11.4%). The highest proportion of soil residual ~SN from the labeled fertilizer N (%Ndff) was detected around 90 cm soil depth at the time of the 1st year harvest and at 110-130 cm soil depth at time of the 2nd year harvest. Soil %Ndff in 0-80 cm depth was significantly higher in the alfalfa treatment than those in all the other treatments. The soil %Ndff below 100 cm depth was much lower in the alfalfa than those in all the other treatments. These results indicated that ^15N leaching losses in the alfalfa treatment were significantly lower than by those in the black poplar and cocksfoot treatments, due to the higher root density located in nitrate labeling zone of soil profile. In conclusion, alfalfa may be used as a plant to capture deep soil NO3- left from previous crops to reduce NO3- leaching in high intensity crop cultivation systems of North China Plain.展开更多
[Objective] The aim of this study was investigated the rice yield, nitrogen uptake and ^15-fertilizer fate at different transplanting density to provide scientific ba- sis for improving the yield of rice and applying ...[Objective] The aim of this study was investigated the rice yield, nitrogen uptake and ^15-fertilizer fate at different transplanting density to provide scientific ba- sis for improving the yield of rice and applying reasonably fertilizer. [Method] A field experiment was carried out to study the effect of different transplanting density on rice yield, nitrogen (N) absorption, sources of N uptake by rice and the N balance in the plant-soil systems by using ^15-labelled urea. [Result] There were no significant differences in rice yields and total N uptakes by rice between treatments 30 cm × 30 cm and 40 cm × 40 cm, but the yield of rice and total N absorption in the two treatments were remarkably higher than those in 50 cm × 50 cm treatment. The amounts of total N uptake by rice were in the range of 112.3-162.7 kg/hm2 in the three transplanting densities. The result showed that about 1/3 of the total N uptake by rice was supplied by application fertilizer and the other 2/3 was obtained from the soil N pool. The ^15N-labelled urea absorbed by rice, residual in soil and lost accounted for 16.3%-26.1%, 17.0%-20.9% and 53.0%-66.7% of the total fertilizer, respectively. A great deal of ^15N-labelled urea was lost during the rice growing season. [Conclusion] Considering the rice yield and environmental protection, the transplanting density of 30 cm×30 cm was recommended in the hilly area of Sichuan basin in the southwest China.展开更多
Apple replant disease(ARD)is a complex agricultural problem caused by multiple stressors that can lead to increased reactive oxygen species(ROS)levels and limited nutrient utilization in plants.However,existing counte...Apple replant disease(ARD)is a complex agricultural problem caused by multiple stressors that can lead to increased reactive oxygen species(ROS)levels and limited nutrient utilization in plants.However,existing countermeasures cannot effectively address this challenge.Here,we used Malus hupehensis as a test organism to investigate whether the pleiotropic molecule dopamine can alleviate ARD using pot experiments.Exogenous application of 100μmol L-1 dopamine significantly promoted the growth of apple seedlings in the replanted soil,with a relative growth rate increase of 17.44%.Our results revealed two major pathways by which dopamine regulates ARD resistance in apple trees.First,dopamine effectively reduces the level of ROS and activates the expression of genes related to nitrogen(N)transport and metabolism.Among those genes,MdNLP5,MdNRT1.1,MdNLP2,MdNRT2.5,MdNLP3,MdNRT2.4,MdNADH-GAGOT,and MdFd-GAGOT were strongly regulated by dopamine.These regulatory effects promoted the uptake and utilization of soil N by the plants.Second,dopamine improved the physical and chemical properties,enhanced microbial community diversity,and promoted mutual cooperation between microbial communities in the soil.Furthermore,dopamine altered the microbial structure of rhizosphere soil(upregulating Clostridiales,Gaiellales,Sordariales and Mortierellales;downregulating Micrococcales,Longimicrobiales,Hypocreales and Cystobasidiales).Notably,dopamine significantly upregulated the abundances of Gaiella and Mortierella,both of which were positively correlated with soil urease activity,soil available N content,plant growth and N uptake.Dopamine also significantly downregulated the abundance of the plant pathogen Gibberella(by 11.71-fold)in replant soil.Our results provide insights into the mechanisms by which dopamine promotes ARD resistance,and can promote the sustainable development of the apple industry.展开更多
^(15)N isotope-labeled amino acids(^(15)N-amino acids)are crucial in the fields of biology,medicine,and chemistry.^(15)N-amino acids are conventionally synthesized through microbial fermentation and chemical reductive...^(15)N isotope-labeled amino acids(^(15)N-amino acids)are crucial in the fields of biology,medicine,and chemistry.^(15)N-amino acids are conventionally synthesized through microbial fermentation and chemical reductive amination of ketonic acids methodologies,which usually require complicated procedures,high temperatures,or toxic cyanide usage,causing energy and environmental concerns.Here,we report a sustainable pathway to synthesize ^(15)N-amino acids from readily available ^(15)N-nitrite(^(15)NO_(2)-)and biomass-derived ketonic acids under ambient conditions driven by renewable electricity.A mechanistic study demonstrates a ^(15)N-nitrite→^(15)NH_(2)OH→^(15)N-pyruvate oxime→^(15)N-alanine reaction pathway for ^(15)N-alanine synthesis.Moreover,this electrochemical strategy can synthesize six ^(15)N-amino acids with 68%–95%yields.Furthermore,a ^(15)N-labeled drug of ^(15)N-tiopronin,the most commonly used hepatitis treatment drug,is fabricated using ^(15)N-glycine as the building block.Impressively,^(15)N sources can be recycled by the electrooxidation of ^(15)NH4^(+) to ^(15)NO_(2)-with a method economy.This work opens an avenue for the green synthesis of ^(15)N-labeled compounds or drugs.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 40571071, 30390080 and 30370287)the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT0511).
文摘A field experiment was conducted to investigate the fate of ^15N-labeled urea and its residual effect under the winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) rotation system on the North China Plain. Compared to a conventional application rate of 360 kg N ha^-1 (N360), a reduced rate of 120 kg N ha^-1 (N120) led to a significant increase (P 〈 0.05) in wheat yield and no significant differences were found for maize. However, in the 0-100 cm soil profile at harvest, compared with N360, N120 led to significant decreases (P 〈 0.05) of percent residual N and percent unaccounted-for N, which possibly reflected losses from the managed system. Of the residual fertilizer N in the soil profile, 25.6%-44.7% and 20.7%-38.2% for N120 and N360, respectively, were in the organic N pool, whereas 0.3%-3.0% and 11.2%-24.4%, correspondingly, were in the nitrate pool, indicating a higher potential for leaching loss associated with application at the conventional rate. Recovery of residual N in the soil profile by succeeding crops was less than 7.5% of the applied N. For N120, total soil N balance was negative; however, there was still considerable mineral N (NH4^+-N and NO3^--N) in the soil profile after harvest. Therefore, N120 could be considered ngronomically acceptable in the short run, but for long-term sustainability, the N rate should be recommended based on a soil mineral N test and a plant tissue nitrate test to maintain the soil fertility.
文摘Ammonia volatilization loss and ^15N balance were studied in a rice field at three different stages after urea application in Taihu Lake area with a micrometeorological technique. Factors such as climate and the NH4^+-N concentration in the field floodwater affecting ammonia loss were also investigated. Results show that the ammonia loss by volatilization accounted for 18.6%-38.7% of urea applied at different stages, the greatest loss took place when urea was applied at the tillering stage, the smallest at the ear bearing stage, and the intermediate loss at the basal stage. The greatest loss took place within 7 d following the fertilizer application. Ammonia volatilization losses at three fertilization stages were significantly correlated with the ammonium concentration in the field floodwater after the fertilizer was applied. ^15N balance experiment indicated that the use efficiency of urea by rice plants ranged between 24.4% and 28.1%. At the early stage of rice growth, the fertilizer nitrogen use efficiency was rather low, only about 12%. The total amount of nitrogen lost from different fertilization stages in the rice field was 44.1%-54.4%, and the ammonia volatilization loss was 25.4%-33.3%. Reducing ammonia loss is an important treatment for improving N use efficiency.
文摘Three goats were fed with ^15N-labelled rice straw to study the characteristics of digestion,assimilation,transformation and excretion of C and N compounds from rice straw.It was shown that the amount of ^15N transformed into the bodies of the two slaughtered goats accounted for 38.5 and 23.6% of the total amount of ^15N deposition of the experimental diet taken by each goat.The ^15N excreted through the feces and urine for the three goats accounted for 34.8,33.2 and 33.9% of the total amount of ^15N deposition in the feed of the 3 goats.The recovery of total ^15N for the two slaughtered goats were 73.3 and 57.5%,with the corresponding rates of ^15N loss 26.7 and 42.5% respectively.The digestibilities of total amino acids for Goats 1 and 3 were 68.7 and 54.0%,and the digestibilties of carbohydrates for the two goats were 74.8 and 67.7% respectively.
基金financially supported by the Provincial Natural Science Foundation of Hebei Province in China(C2006000491)the financial support from the National Natural Science Foundation of China(30571110,31172033)the National 863 Program of China(2012AA101403-3)
文摘The objective of this study was to determine the efficiency of different plant systems in capturing deep soil nitrate (NO3-) to reduce NO3- leaching in a field plot experiment using 15N labelling. The study was conducted on a calcareous alluvial soil on the North China Plains and the plant systems evaluated included alfalfa (Medicago sativa), American black poplar (Populus nigra) and cocksfoot (Dactylis). ^15N-labelled N fertilizer was injected to 90 cm depth to determine the recovery of ^15N by the plants. With conventional water and nutrient management, the total recovery of ^15N-labeled NO3--N was 23.4% by alfalfa after two consecutive growth years. The recovery was significantly higher than those by American black poplar (12.3%) and cocksfoot (11.4%). The highest proportion of soil residual ~SN from the labeled fertilizer N (%Ndff) was detected around 90 cm soil depth at the time of the 1st year harvest and at 110-130 cm soil depth at time of the 2nd year harvest. Soil %Ndff in 0-80 cm depth was significantly higher in the alfalfa treatment than those in all the other treatments. The soil %Ndff below 100 cm depth was much lower in the alfalfa than those in all the other treatments. These results indicated that ^15N leaching losses in the alfalfa treatment were significantly lower than by those in the black poplar and cocksfoot treatments, due to the higher root density located in nitrate labeling zone of soil profile. In conclusion, alfalfa may be used as a plant to capture deep soil NO3- left from previous crops to reduce NO3- leaching in high intensity crop cultivation systems of North China Plain.
基金Supported by the Financial Breeding Fund for Young Scholars in Sichuan Province(2008QNJJ-016)Financial Fund for Excellent Gene Engineering Papers in Sichuan Province (2010LWJJ-008)~~
文摘[Objective] The aim of this study was investigated the rice yield, nitrogen uptake and ^15-fertilizer fate at different transplanting density to provide scientific ba- sis for improving the yield of rice and applying reasonably fertilizer. [Method] A field experiment was carried out to study the effect of different transplanting density on rice yield, nitrogen (N) absorption, sources of N uptake by rice and the N balance in the plant-soil systems by using ^15-labelled urea. [Result] There were no significant differences in rice yields and total N uptakes by rice between treatments 30 cm × 30 cm and 40 cm × 40 cm, but the yield of rice and total N absorption in the two treatments were remarkably higher than those in 50 cm × 50 cm treatment. The amounts of total N uptake by rice were in the range of 112.3-162.7 kg/hm2 in the three transplanting densities. The result showed that about 1/3 of the total N uptake by rice was supplied by application fertilizer and the other 2/3 was obtained from the soil N pool. The ^15N-labelled urea absorbed by rice, residual in soil and lost accounted for 16.3%-26.1%, 17.0%-20.9% and 53.0%-66.7% of the total fertilizer, respectively. A great deal of ^15N-labelled urea was lost during the rice growing season. [Conclusion] Considering the rice yield and environmental protection, the transplanting density of 30 cm×30 cm was recommended in the hilly area of Sichuan basin in the southwest China.
基金supported by National Natural Science Foundation of China(31901964)the Science and Technology Project of Hebei Education Department,China(BJK2022012)+3 种基金the Innovation Ability Training Project for Graduate Student of Hebei Province,China(CXZZBS2023071)the Introduced Talents Project of Hebei Agricultural University,China(YJ201904)the Key Research and Development Project of Hebei Province,China(21326308D-02-03)the Earmarked Fund for the China Agricultural Research System,China(CARS-27).
文摘Apple replant disease(ARD)is a complex agricultural problem caused by multiple stressors that can lead to increased reactive oxygen species(ROS)levels and limited nutrient utilization in plants.However,existing countermeasures cannot effectively address this challenge.Here,we used Malus hupehensis as a test organism to investigate whether the pleiotropic molecule dopamine can alleviate ARD using pot experiments.Exogenous application of 100μmol L-1 dopamine significantly promoted the growth of apple seedlings in the replanted soil,with a relative growth rate increase of 17.44%.Our results revealed two major pathways by which dopamine regulates ARD resistance in apple trees.First,dopamine effectively reduces the level of ROS and activates the expression of genes related to nitrogen(N)transport and metabolism.Among those genes,MdNLP5,MdNRT1.1,MdNLP2,MdNRT2.5,MdNLP3,MdNRT2.4,MdNADH-GAGOT,and MdFd-GAGOT were strongly regulated by dopamine.These regulatory effects promoted the uptake and utilization of soil N by the plants.Second,dopamine improved the physical and chemical properties,enhanced microbial community diversity,and promoted mutual cooperation between microbial communities in the soil.Furthermore,dopamine altered the microbial structure of rhizosphere soil(upregulating Clostridiales,Gaiellales,Sordariales and Mortierellales;downregulating Micrococcales,Longimicrobiales,Hypocreales and Cystobasidiales).Notably,dopamine significantly upregulated the abundances of Gaiella and Mortierella,both of which were positively correlated with soil urease activity,soil available N content,plant growth and N uptake.Dopamine also significantly downregulated the abundance of the plant pathogen Gibberella(by 11.71-fold)in replant soil.Our results provide insights into the mechanisms by which dopamine promotes ARD resistance,and can promote the sustainable development of the apple industry.
基金supported by the National Natural Science Foundation of China(22271213)the National Postdoctoral Science Foundation of China(2022M722357)。
文摘^(15)N isotope-labeled amino acids(^(15)N-amino acids)are crucial in the fields of biology,medicine,and chemistry.^(15)N-amino acids are conventionally synthesized through microbial fermentation and chemical reductive amination of ketonic acids methodologies,which usually require complicated procedures,high temperatures,or toxic cyanide usage,causing energy and environmental concerns.Here,we report a sustainable pathway to synthesize ^(15)N-amino acids from readily available ^(15)N-nitrite(^(15)NO_(2)-)and biomass-derived ketonic acids under ambient conditions driven by renewable electricity.A mechanistic study demonstrates a ^(15)N-nitrite→^(15)NH_(2)OH→^(15)N-pyruvate oxime→^(15)N-alanine reaction pathway for ^(15)N-alanine synthesis.Moreover,this electrochemical strategy can synthesize six ^(15)N-amino acids with 68%–95%yields.Furthermore,a ^(15)N-labeled drug of ^(15)N-tiopronin,the most commonly used hepatitis treatment drug,is fabricated using ^(15)N-glycine as the building block.Impressively,^(15)N sources can be recycled by the electrooxidation of ^(15)NH4^(+) to ^(15)NO_(2)-with a method economy.This work opens an avenue for the green synthesis of ^(15)N-labeled compounds or drugs.