Laser cooling is the most promising method to achieve high phase-space densities, even crystalline beams for relativistic heavy ion at storage rings[1]. A test laser cooling experiment has been performed with 12C3+ io...Laser cooling is the most promising method to achieve high phase-space densities, even crystalline beams for relativistic heavy ion at storage rings[1]. A test laser cooling experiment has been performed with 12C3+ ions at the CSRe. In this experiment, the 12C3+ ions were produced from an electron cyclotron resonance (ECR) ion source, and due to the residual gas and the injection gases such as CO and CO2, 16O4+ ions will be produced at the same time.展开更多
First-principles calculations predict that olivine Li4 MnFeCoNiP4O16 has a large toroidal moment and ferrimagnetic configuration with a magnetic moment of 1.99μB per formula unit. Density functional theory plus U (D...First-principles calculations predict that olivine Li4 MnFeCoNiP4O16 has a large toroidal moment and ferrimagnetic configuration with a magnetic moment of 1.99μB per formula unit. Density functional theory plus U (DFTTU) shows an indirect band gap of 0.65 eV in this hypothetical material. The band gap is not simply related to the electronic conductivity when it is used as cathode material in rechargeable Li-ion batteries. Based on the orbital-resolved density of states for the transition-metal ions in the hypothetical material, Co, Ni and Mn are in the high-spin configuration while Fe is in the low-spin configuration, which leads to a large resulting toroidal moment deriving from the Co and Ni ions. The spin configuration of the transition-metal ions in the system breaks the space- and time-inversion symmetry and leads to the magnetoelectric property simultaneously. The ferrotoroidic domain, the fourth form of ferroic, is observed in this new material, as in the case of LiCoPO4 reported recently.展开更多
Two C16H12O4 isomers of derivatives of pagodane were firstly reported and studied by using DFT method. Geometries, energies, and vibrational frequencies have been calculated for the two C16H12O4 isomers with pagodane-...Two C16H12O4 isomers of derivatives of pagodane were firstly reported and studied by using DFT method. Geometries, energies, and vibrational frequencies have been calculated for the two C16H12O4 isomers with pagodane-like structures at the B3LYP/6-31G^** level of theory. Symmetries of isomer 1 and 2 are D2h and D2d, respectively. Heats of formation for the two C16H12O4 isomers have been estimated in this paper. According to the heats of formation, the two C16H12O4 isomers are more stable than pagodane. Heats of formation as well as the vibrational analysis indicate that the two C16H12O4 isomers enjoy sufficient stability to allow for the experimental preparation.展开更多
Zn(CF_(3)SO_(3))_(2)as an electrolyte has been widely used to improve the electrochemical performance for ZIBs due to that the bulky CF_(3)SO_(3)-can reduce the solvation effect of Zn^(2+)and promote the ionic diffusi...Zn(CF_(3)SO_(3))_(2)as an electrolyte has been widely used to improve the electrochemical performance for ZIBs due to that the bulky CF_(3)SO_(3)-can reduce the solvation effect of Zn^(2+)and promote the ionic diffusion.Herein,we found that Zn(CF_(3)SO_(3))_(2)electrolyte can induce different electrochemical mechanisms from ZnSO_(4)electrolyte.Compared to the ZnSO^(4)electrolyte,the HNaV_(6)O_(16)·4H2_(O)electrode with Zn(CF_(3)SO_(3))_(2)electrolyte exhibits a high capacity of 444 mAh·g^(-1)at 500 mA·g^(-1)with a capacity retention of 92.3%after 80 cycles.Even,at a high rate of 5 Ag-1,the HNaV_(6)O_(16)·4H_(2)O electrode delivers an initial discharge capacity of 328 mAh·g^(-1)with a capacity retention of 93.7%after 1000 cycles.Differing from the mechanism with ZnSO4 electrolyte,the excellent cycle stability of HNaV_(6)O_(16)·4H_(2)Oelectrode can be attributed to the in-situ phase transformation to ZnxV_(2)O_(5)·nH_(2)O based on the co-intercalation of Zn^(2+)/H^(+).展开更多
基金National Natural Science Foundation of China(11504388), West Light Doctoral Foundation of Chinese Academy of Sciences
文摘Laser cooling is the most promising method to achieve high phase-space densities, even crystalline beams for relativistic heavy ion at storage rings[1]. A test laser cooling experiment has been performed with 12C3+ ions at the CSRe. In this experiment, the 12C3+ ions were produced from an electron cyclotron resonance (ECR) ion source, and due to the residual gas and the injection gases such as CO and CO2, 16O4+ ions will be produced at the same time.
文摘First-principles calculations predict that olivine Li4 MnFeCoNiP4O16 has a large toroidal moment and ferrimagnetic configuration with a magnetic moment of 1.99μB per formula unit. Density functional theory plus U (DFTTU) shows an indirect band gap of 0.65 eV in this hypothetical material. The band gap is not simply related to the electronic conductivity when it is used as cathode material in rechargeable Li-ion batteries. Based on the orbital-resolved density of states for the transition-metal ions in the hypothetical material, Co, Ni and Mn are in the high-spin configuration while Fe is in the low-spin configuration, which leads to a large resulting toroidal moment deriving from the Co and Ni ions. The spin configuration of the transition-metal ions in the system breaks the space- and time-inversion symmetry and leads to the magnetoelectric property simultaneously. The ferrotoroidic domain, the fourth form of ferroic, is observed in this new material, as in the case of LiCoPO4 reported recently.
基金This work was supported by the Natural Science Foundation of Shandong Province (Y2002G11)
文摘Two C16H12O4 isomers of derivatives of pagodane were firstly reported and studied by using DFT method. Geometries, energies, and vibrational frequencies have been calculated for the two C16H12O4 isomers with pagodane-like structures at the B3LYP/6-31G^** level of theory. Symmetries of isomer 1 and 2 are D2h and D2d, respectively. Heats of formation for the two C16H12O4 isomers have been estimated in this paper. According to the heats of formation, the two C16H12O4 isomers are more stable than pagodane. Heats of formation as well as the vibrational analysis indicate that the two C16H12O4 isomers enjoy sufficient stability to allow for the experimental preparation.
基金This study was financially supported by the National Natural Science Foundation of China(No.51772193)China Postdoctral Science Foundation(No.2019T250254).
文摘Zn(CF_(3)SO_(3))_(2)as an electrolyte has been widely used to improve the electrochemical performance for ZIBs due to that the bulky CF_(3)SO_(3)-can reduce the solvation effect of Zn^(2+)and promote the ionic diffusion.Herein,we found that Zn(CF_(3)SO_(3))_(2)electrolyte can induce different electrochemical mechanisms from ZnSO_(4)electrolyte.Compared to the ZnSO^(4)electrolyte,the HNaV_(6)O_(16)·4H2_(O)electrode with Zn(CF_(3)SO_(3))_(2)electrolyte exhibits a high capacity of 444 mAh·g^(-1)at 500 mA·g^(-1)with a capacity retention of 92.3%after 80 cycles.Even,at a high rate of 5 Ag-1,the HNaV_(6)O_(16)·4H_(2)O electrode delivers an initial discharge capacity of 328 mAh·g^(-1)with a capacity retention of 93.7%after 1000 cycles.Differing from the mechanism with ZnSO4 electrolyte,the excellent cycle stability of HNaV_(6)O_(16)·4H_(2)Oelectrode can be attributed to the in-situ phase transformation to ZnxV_(2)O_(5)·nH_(2)O based on the co-intercalation of Zn^(2+)/H^(+).