The objective of the present study was to investigate the effects of genistein and equol on 3β-hydroxysteroid de- hydrogenase (3β-HSD) and 17β-hydroxysteroid dehydrogenase 3 (17β-HSD3) in human and rat testis ...The objective of the present study was to investigate the effects of genistein and equol on 3β-hydroxysteroid de- hydrogenase (3β-HSD) and 17β-hydroxysteroid dehydrogenase 3 (17β-HSD3) in human and rat testis microsomes. These enzymes (3β-HSD and 17β-HSD3), along with two others (cytochrome P450 side-chain cleavage enzyme and cytochrome P450 17α-hydroxylase/17-20 lyase), catalyze the reactions that convert the steroid cholesterol into the sex hormone testosterone. Genistein inhibited 3β-HSD activity (0.2 μmol L^-1 pregnenolone) with half-maximal inhibition or a half-maximal inhibitory concentration (IC50) of 87 ± 15 (human) and 636 ± 155 nmol L^-1 (rat). Genistein's mode of action on 3β-HSD activity was competitive for the substrate pregnenolonrge and noncompetitive for the cofactor NAD+. There was no difference in genistein's potency of 3β-HSD inhibition between intact rat Leydig cells and testis microsomes. In contrast to its potent inhibition of 3β-HSD, genistein had lesser effects on human and rat 17β-HSD3 (0.1 μmol L^-1 androstenedione), with an IC50 〉 100μmol L^-1. On the other hand, equol only inhibited human 3β-HSD by 42%, and had no effect on 3β-HSD and 17β-HSD3 in rat tissues. These observations imply that the ability of soy isoflavones to regulate androgen biosynthesis in Leydig cells is due in part to action on Leydig cell 3β- HSD activity. Given the increasing intake of soy-based food products and their potential effect on blood androgen levels, these findings are greatly relevant to public health.展开更多
17β-hydroxysteroid dehydrogenase(17β-HSD)type 1 is known as a critical target to block the final step of estrogen production in estrogen-dependent breast cancer.Recent confirmation of the role of dyhydroxytestostero...17β-hydroxysteroid dehydrogenase(17β-HSD)type 1 is known as a critical target to block the final step of estrogen production in estrogen-dependent breast cancer.Recent confirmation of the role of dyhydroxytestosterone(DHT)in counteracting estrogeninduced cell growth prompted us to study the reductive 17β-HSD type 7(17β-HSD7),which activates estrone while markedly inactivatingDHT.The role ofDHTin breast cancer cell proliferation isdemonstratedby its independent suppression of cell growthin the presence of a physiological concentration of estradiol(E2).Moreover,an integral analysis of a large number of clinical samples in Oncomine datasets demonstrated the overexpression of 17β-HSD7 in breast carcinoma.Inhibition of 17β-HSD7 in breast cancer cells resulted in a lower level of E2 and a higher level of DHT,successively induced regulation of cyclinD1,p21,Bcl-2,and Bik,consequently arrested cell cycle in the G0/G1 phase,and triggered apoptosis and auto-downregulation feedback of the enzyme.Such inhibition led to significant shrinkage of xenograft tumors with decreased cancer cell density and reduced 17β-HSD7 expression.Decreased plasma E2 and elevated plasma DHT levels were also found.Thus,the dual functional 17β-HSD7 is proposed as a novel target for estrogen-dependent breast cancer by regulating the balance of E2 andDHT.Thisdemonstrates aconceptual advance on the general belief that the major role of this enzyme is in cholesterol metabolism.展开更多
文摘The objective of the present study was to investigate the effects of genistein and equol on 3β-hydroxysteroid de- hydrogenase (3β-HSD) and 17β-hydroxysteroid dehydrogenase 3 (17β-HSD3) in human and rat testis microsomes. These enzymes (3β-HSD and 17β-HSD3), along with two others (cytochrome P450 side-chain cleavage enzyme and cytochrome P450 17α-hydroxylase/17-20 lyase), catalyze the reactions that convert the steroid cholesterol into the sex hormone testosterone. Genistein inhibited 3β-HSD activity (0.2 μmol L^-1 pregnenolone) with half-maximal inhibition or a half-maximal inhibitory concentration (IC50) of 87 ± 15 (human) and 636 ± 155 nmol L^-1 (rat). Genistein's mode of action on 3β-HSD activity was competitive for the substrate pregnenolonrge and noncompetitive for the cofactor NAD+. There was no difference in genistein's potency of 3β-HSD inhibition between intact rat Leydig cells and testis microsomes. In contrast to its potent inhibition of 3β-HSD, genistein had lesser effects on human and rat 17β-HSD3 (0.1 μmol L^-1 androstenedione), with an IC50 〉 100μmol L^-1. On the other hand, equol only inhibited human 3β-HSD by 42%, and had no effect on 3β-HSD and 17β-HSD3 in rat tissues. These observations imply that the ability of soy isoflavones to regulate androgen biosynthesis in Leydig cells is due in part to action on Leydig cell 3β- HSD activity. Given the increasing intake of soy-based food products and their potential effect on blood androgen levels, these findings are greatly relevant to public health.
基金supported by operating grants from Canadian Institutes of Health Research(CIHR,MOP 97917 to S.-X.L.,D.P.,and C.J.D.MOP 89851 to S.-X.L.and D.P.)China Scholarship Council(PhD Fellowship,#2010621032 to X.Q.W.).
文摘17β-hydroxysteroid dehydrogenase(17β-HSD)type 1 is known as a critical target to block the final step of estrogen production in estrogen-dependent breast cancer.Recent confirmation of the role of dyhydroxytestosterone(DHT)in counteracting estrogeninduced cell growth prompted us to study the reductive 17β-HSD type 7(17β-HSD7),which activates estrone while markedly inactivatingDHT.The role ofDHTin breast cancer cell proliferation isdemonstratedby its independent suppression of cell growthin the presence of a physiological concentration of estradiol(E2).Moreover,an integral analysis of a large number of clinical samples in Oncomine datasets demonstrated the overexpression of 17β-HSD7 in breast carcinoma.Inhibition of 17β-HSD7 in breast cancer cells resulted in a lower level of E2 and a higher level of DHT,successively induced regulation of cyclinD1,p21,Bcl-2,and Bik,consequently arrested cell cycle in the G0/G1 phase,and triggered apoptosis and auto-downregulation feedback of the enzyme.Such inhibition led to significant shrinkage of xenograft tumors with decreased cancer cell density and reduced 17β-HSD7 expression.Decreased plasma E2 and elevated plasma DHT levels were also found.Thus,the dual functional 17β-HSD7 is proposed as a novel target for estrogen-dependent breast cancer by regulating the balance of E2 andDHT.Thisdemonstrates aconceptual advance on the general belief that the major role of this enzyme is in cholesterol metabolism.