The relationship between the microstructure transformation of type 17-4 PH stainless steel and the aging hardening behavior was investigated. The results showed that, when 17-4 PH stainless steel aging at 595℃, the b...The relationship between the microstructure transformation of type 17-4 PH stainless steel and the aging hardening behavior was investigated. The results showed that, when 17-4 PH stainless steel aging at 595℃, the bulk hardness of samples attains its peak value (42.5 HRC) for about 20 min, and then decreases at all time. TEM revealed the microstructure corresponding with peak hardness is that the fine spheroid-shape copper with the fcc crystal structure and the fiber-shape secondary carbide M23C6 precipitated from the lath martensite matrix. Both precipitations of copper and M23C6 are the reasons for strengthening of the alloy at this temperature. With the extension of holding time at this temperature, the copper and secondary carbide grow and lose the coherent relationship with the matrix, so the bulk hardness of samples decreases.展开更多
Additive Manufacturing (AM) of metals allows the production of parts with complex designs, offeringadvanced properties if the evolution of the texture can be controlled. 17-4 precipitation hardening (PH)stainless stee...Additive Manufacturing (AM) of metals allows the production of parts with complex designs, offeringadvanced properties if the evolution of the texture can be controlled. 17-4 precipitation hardening (PH)stainless steel is a high strength, high corrosion resistance alloy used in a range of industries suitable forAM, such as aerospace and marine. Despite 17-4 PH being one of the most common steels for AM, thereare still gaps in the understanding of its AM processing–structure relationships. These include the natureof the matrix phase, as well as the development of texture through AM builds under different processingconditions. We have investigated how changing the laser power and scanning strategy affects the microstructure of 17-4 PH during laser powder bed fusion. It is revealed that the matrix phase is δ-ferritewith a limited austenite presence, mainly in regions of the microstructure immediately below melt pools.Austenite fraction is independent of the printing pattern and laser power. However, reducing the timebetween adjacent laser passes during printing results in an increase in the austenite volume fraction.Another effect of the higher laser power, as well as additional remelting within the printing strategy, isan increase in the average grain size by epitaxial ferrite grain growth across multiple build layers andthe development of a mosaic type microstructure. Changes to the scanning strategy have significant impacts on the textures observed along the build direction, while (100) texture along the scanning directionis observed consistently. Mechanisms for texture formation and the mosaic structure are proposed thatpresents a pathway to the design of texture via AM process control.展开更多
The effect of aging temperature on erosion corrosion (E-C) behavior of 17-4PH stainless steels in dilute sulphuric acid slurry containing solid particles was studied by using self-made rotating E-C apparatus. The ef...The effect of aging temperature on erosion corrosion (E-C) behavior of 17-4PH stainless steels in dilute sulphuric acid slurry containing solid particles was studied by using self-made rotating E-C apparatus. The effect of impact velocity on EC behavior of 17 4PH steels at different aging temperatures was analyzed. Surface micrographs of the specimens after E C test were observed by using scanning electron microscope (SEM). The results showed that under the condition of the same solution heat treatment, when aging temperature ranged from 400 ℃ to 610℃, the hardness reached the highest value near the temperature 460℃. The characteristics of E-C for 17-4PH stainless steels at different aging temperatures were as follows: pure erosion (wear) was dominant, corrosion was subordinate and at the same time corrosion promoted erosion. The effect of aging temperature on E-C rate of 17-4PH steels was not significant at low impact velocity, but it was found that E-C resistance of 17-4PH steels aged near 460℃ was the most excellent due to the best precipitation strengthening effect of fine and dispersed e-Cu phase. With a prerequisite of appropriate corrosion resistance, the precipitation hardening could significantly improve the E-C resistance of the materials.展开更多
The feedstock based on the binder 65%PW-30%EVA-5%SA has the best general rheological properties for the 17-4PH stainless steel powder. The 17-4PH stainless steel compacts sintered at 1 380 ℃ for 90 min have the best ...The feedstock based on the binder 65%PW-30%EVA-5%SA has the best general rheological properties for the 17-4PH stainless steel powder. The 17-4PH stainless steel compacts sintered at 1 380 ℃ for 90 min have the best mechanical properties and the good microstructure with homogeneously distributed pore structure and the moderate-sized grains. Whereas the compacts sintered for 60 min and 120 min show an inadequate and an over-sintered microstructure respectively. The compacts sintered at 1380 ℃ for 90 min have the density of 7.70 g/cm^3, the strength of 1 275 MPa, the elongation of 5%, and hardness of HRC36. With the increase of sintering temperature, the density, strength and hardness increase, while the elongation decreases. The 17-4PH stainless steel has good corrosion resistance, showing an activation-passivation polarization curve. But the passivation potential range is narrow and the spot corrosion potential is low, indicating a low anti-spot corrosive properties.展开更多
The effect of aging temperature on stress corrosion crocking of 17-4 precipitation-hardened(PH)stainless steel in simulated stimulant oil well environment was studied by the method B-NACE standard bent-beam test.It is...The effect of aging temperature on stress corrosion crocking of 17-4 precipitation-hardened(PH)stainless steel in simulated stimulant oil well environment was studied by the method B-NACE standard bent-beam test.It is found that when aging temperature ranges from 480 to 610℃,the sensitivity of hydrogen embrittlement decreases significantly.展开更多
基金This work was financially supported by the Key Nuclear Fuel and Nuclear Materials Laboratory of China(No.51481080104ZS8501).
文摘The relationship between the microstructure transformation of type 17-4 PH stainless steel and the aging hardening behavior was investigated. The results showed that, when 17-4 PH stainless steel aging at 595℃, the bulk hardness of samples attains its peak value (42.5 HRC) for about 20 min, and then decreases at all time. TEM revealed the microstructure corresponding with peak hardness is that the fine spheroid-shape copper with the fcc crystal structure and the fiber-shape secondary carbide M23C6 precipitated from the lath martensite matrix. Both precipitations of copper and M23C6 are the reasons for strengthening of the alloy at this temperature. With the extension of holding time at this temperature, the copper and secondary carbide grow and lose the coherent relationship with the matrix, so the bulk hardness of samples decreases.
基金supported under the Australian Research Council’s DECRA (project number DE180100440)the UNSW Scientia Fellowship schemes
文摘Additive Manufacturing (AM) of metals allows the production of parts with complex designs, offeringadvanced properties if the evolution of the texture can be controlled. 17-4 precipitation hardening (PH)stainless steel is a high strength, high corrosion resistance alloy used in a range of industries suitable forAM, such as aerospace and marine. Despite 17-4 PH being one of the most common steels for AM, thereare still gaps in the understanding of its AM processing–structure relationships. These include the natureof the matrix phase, as well as the development of texture through AM builds under different processingconditions. We have investigated how changing the laser power and scanning strategy affects the microstructure of 17-4 PH during laser powder bed fusion. It is revealed that the matrix phase is δ-ferritewith a limited austenite presence, mainly in regions of the microstructure immediately below melt pools.Austenite fraction is independent of the printing pattern and laser power. However, reducing the timebetween adjacent laser passes during printing results in an increase in the austenite volume fraction.Another effect of the higher laser power, as well as additional remelting within the printing strategy, isan increase in the average grain size by epitaxial ferrite grain growth across multiple build layers andthe development of a mosaic type microstructure. Changes to the scanning strategy have significant impacts on the textures observed along the build direction, while (100) texture along the scanning directionis observed consistently. Mechanisms for texture formation and the mosaic structure are proposed thatpresents a pathway to the design of texture via AM process control.
文摘The effect of aging temperature on erosion corrosion (E-C) behavior of 17-4PH stainless steels in dilute sulphuric acid slurry containing solid particles was studied by using self-made rotating E-C apparatus. The effect of impact velocity on EC behavior of 17 4PH steels at different aging temperatures was analyzed. Surface micrographs of the specimens after E C test were observed by using scanning electron microscope (SEM). The results showed that under the condition of the same solution heat treatment, when aging temperature ranged from 400 ℃ to 610℃, the hardness reached the highest value near the temperature 460℃. The characteristics of E-C for 17-4PH stainless steels at different aging temperatures were as follows: pure erosion (wear) was dominant, corrosion was subordinate and at the same time corrosion promoted erosion. The effect of aging temperature on E-C rate of 17-4PH steels was not significant at low impact velocity, but it was found that E-C resistance of 17-4PH steels aged near 460℃ was the most excellent due to the best precipitation strengthening effect of fine and dispersed e-Cu phase. With a prerequisite of appropriate corrosion resistance, the precipitation hardening could significantly improve the E-C resistance of the materials.
文摘The feedstock based on the binder 65%PW-30%EVA-5%SA has the best general rheological properties for the 17-4PH stainless steel powder. The 17-4PH stainless steel compacts sintered at 1 380 ℃ for 90 min have the best mechanical properties and the good microstructure with homogeneously distributed pore structure and the moderate-sized grains. Whereas the compacts sintered for 60 min and 120 min show an inadequate and an over-sintered microstructure respectively. The compacts sintered at 1380 ℃ for 90 min have the density of 7.70 g/cm^3, the strength of 1 275 MPa, the elongation of 5%, and hardness of HRC36. With the increase of sintering temperature, the density, strength and hardness increase, while the elongation decreases. The 17-4PH stainless steel has good corrosion resistance, showing an activation-passivation polarization curve. But the passivation potential range is narrow and the spot corrosion potential is low, indicating a low anti-spot corrosive properties.
文摘The effect of aging temperature on stress corrosion crocking of 17-4 precipitation-hardened(PH)stainless steel in simulated stimulant oil well environment was studied by the method B-NACE standard bent-beam test.It is found that when aging temperature ranges from 480 to 610℃,the sensitivity of hydrogen embrittlement decreases significantly.