BACKGROUND Hepatocellular carcinoma(HCC)is an inflammation-associated tumor with a dismal prognosis.Immunotherapy has become an important treatment strategy for HCC,as immunity is closely related to inflammation in th...BACKGROUND Hepatocellular carcinoma(HCC)is an inflammation-associated tumor with a dismal prognosis.Immunotherapy has become an important treatment strategy for HCC,as immunity is closely related to inflammation in the tumor microenvir-onment.Inflammation regulates the expression of programmed death ligand-1(PD-L1)in the immunosuppressive tumor microenvironment and affects im-munotherapy efficacy.Interleukin-17A(IL-17A)is involved in the remodeling of the tumor microenvironment and plays a protumor or antitumor role in different tumors.We hypothesized that IL-17A participates in tumor progression by affe-cting the level of immune checkpoint molecules in HCC.The upregulation of PD-L1 expression in HCC cells by IL-17A was assessed by reverse transcription PCR,western blotting,and flow cytometry.Mechanistic studies were conducted with gene knockout models and pathway inhibitors.The function of IL-17A in immune evasion was explored through coculture of T cells and HCC cells.The effects of IL-17A on the malignant biological behaviors of HCC cells were evaluated in vitro,and the antitumor effects of an IL-17A inhibitor and its synergistic effects with a PD-L1 inhibitor were studied in vivo.RESULTS IL-17A upregulated PD-L1 expression in HCC cells in a dose-dependent manner,whereas IL-17A receptor knockout or treatment with a small mothers against decapentaplegic 2 inhibitor diminished the PD-L1 expression induced by IL-17A.IL-17A enhanced the survival of HCC cells in the coculture system.IL-17A increased the viability,G2/M ratio,and migration of HCC cells and decreased the apoptotic index.Cyclin D1,VEGF,MMP9,and Bcl-1 expression increased after IL-17A treatment,whereas BAX expression decreased.The combination of IL-17A and PD-L1 inhibitors showed synergistic antitumor efficacy and increased cluster of differentiation 8+T lymphocyte infiltration in an HCC mouse model.CONCLUSION IL-17A upregulates PD-L1 expression via the IL-17A receptor/phosphorylation-small mothers against decapenta-plegic 2 signaling pathway in HCC cells.Blocking IL-17A enhances the therapeutic efficacy of PD-L1 antibodies in HCC in vivo.展开更多
Objective Ulcerative colitis is a prevalent immunoinflammatory disease.Th17/Treg cell imbalance and gut microbiota dysregulation are key factors in ulcerative colitis pathogenesis.The actin cytoskeleton contributes to...Objective Ulcerative colitis is a prevalent immunoinflammatory disease.Th17/Treg cell imbalance and gut microbiota dysregulation are key factors in ulcerative colitis pathogenesis.The actin cytoskeleton contributes to regulating the proliferation,differentiation,and migration of Th17 and Treg cells.Wdr63,a gene containing the WD repeat domain,participates in the structure and functional modulation of actin cytoskeleton.Recent research indicates that WDR63 may serve as a regulator of cell migration and metastasis via actin polymerization inhibition.This article aims to explore the effect of Wdr63 deletion on Th17/Treg cells and ulcerative colitis.Methods We constructed Wdr63-/-mice,induced colitis in mice using dextran sulfate sodium salt,collected colon tissue for histopathological staining,collected mesenteric lymph nodes for flow cytometry analysis,and collected healthy mouse feces for microbial diversity detection.Results Compared with wild-type colitis mice,Wdr63-/-colitis mice had a more pronounced shortening of colonic tissue,higher scores on disease activity index and histological damage index,Treg cells decreased and Th17 cells increased in colonic tissue and mesenteric lymph nodes,a lower level of anti-inflammatory cytokine IL-10,and a higher level of pro-inflammatory cytokine IL-17A.In addition,WDR63 has shown positive effects on maintaining intestinal microbiota homeostasis.It maintains the balance of Bacteroidota and Firmicutes,promoting the formation of beneficial intestinal bacteria linked to immune inflammation.Conclusion Wdr63 deletion aggravates ulcerative colitis in mice,WDR63 inhibits colonic inflammation likely by regulating Th17/Treg balance and maintains intestinal microbiota homeostasis.展开更多
基金Supported by the Natural Science Foundation of Gansu Province,No.21JR7RA373 and No.24JRRA295.
文摘BACKGROUND Hepatocellular carcinoma(HCC)is an inflammation-associated tumor with a dismal prognosis.Immunotherapy has become an important treatment strategy for HCC,as immunity is closely related to inflammation in the tumor microenvir-onment.Inflammation regulates the expression of programmed death ligand-1(PD-L1)in the immunosuppressive tumor microenvironment and affects im-munotherapy efficacy.Interleukin-17A(IL-17A)is involved in the remodeling of the tumor microenvironment and plays a protumor or antitumor role in different tumors.We hypothesized that IL-17A participates in tumor progression by affe-cting the level of immune checkpoint molecules in HCC.The upregulation of PD-L1 expression in HCC cells by IL-17A was assessed by reverse transcription PCR,western blotting,and flow cytometry.Mechanistic studies were conducted with gene knockout models and pathway inhibitors.The function of IL-17A in immune evasion was explored through coculture of T cells and HCC cells.The effects of IL-17A on the malignant biological behaviors of HCC cells were evaluated in vitro,and the antitumor effects of an IL-17A inhibitor and its synergistic effects with a PD-L1 inhibitor were studied in vivo.RESULTS IL-17A upregulated PD-L1 expression in HCC cells in a dose-dependent manner,whereas IL-17A receptor knockout or treatment with a small mothers against decapentaplegic 2 inhibitor diminished the PD-L1 expression induced by IL-17A.IL-17A enhanced the survival of HCC cells in the coculture system.IL-17A increased the viability,G2/M ratio,and migration of HCC cells and decreased the apoptotic index.Cyclin D1,VEGF,MMP9,and Bcl-1 expression increased after IL-17A treatment,whereas BAX expression decreased.The combination of IL-17A and PD-L1 inhibitors showed synergistic antitumor efficacy and increased cluster of differentiation 8+T lymphocyte infiltration in an HCC mouse model.CONCLUSION IL-17A upregulates PD-L1 expression via the IL-17A receptor/phosphorylation-small mothers against decapenta-plegic 2 signaling pathway in HCC cells.Blocking IL-17A enhances the therapeutic efficacy of PD-L1 antibodies in HCC in vivo.
文摘Objective Ulcerative colitis is a prevalent immunoinflammatory disease.Th17/Treg cell imbalance and gut microbiota dysregulation are key factors in ulcerative colitis pathogenesis.The actin cytoskeleton contributes to regulating the proliferation,differentiation,and migration of Th17 and Treg cells.Wdr63,a gene containing the WD repeat domain,participates in the structure and functional modulation of actin cytoskeleton.Recent research indicates that WDR63 may serve as a regulator of cell migration and metastasis via actin polymerization inhibition.This article aims to explore the effect of Wdr63 deletion on Th17/Treg cells and ulcerative colitis.Methods We constructed Wdr63-/-mice,induced colitis in mice using dextran sulfate sodium salt,collected colon tissue for histopathological staining,collected mesenteric lymph nodes for flow cytometry analysis,and collected healthy mouse feces for microbial diversity detection.Results Compared with wild-type colitis mice,Wdr63-/-colitis mice had a more pronounced shortening of colonic tissue,higher scores on disease activity index and histological damage index,Treg cells decreased and Th17 cells increased in colonic tissue and mesenteric lymph nodes,a lower level of anti-inflammatory cytokine IL-10,and a higher level of pro-inflammatory cytokine IL-17A.In addition,WDR63 has shown positive effects on maintaining intestinal microbiota homeostasis.It maintains the balance of Bacteroidota and Firmicutes,promoting the formation of beneficial intestinal bacteria linked to immune inflammation.Conclusion Wdr63 deletion aggravates ulcerative colitis in mice,WDR63 inhibits colonic inflammation likely by regulating Th17/Treg balance and maintains intestinal microbiota homeostasis.