Isopaxametric quadrilateral elements are widely used in the finite element method. However, they have a disadvantage of accuracy loss when elements are distorted. Spline functions have properties of simpleness and con...Isopaxametric quadrilateral elements are widely used in the finite element method. However, they have a disadvantage of accuracy loss when elements are distorted. Spline functions have properties of simpleness and conformality. A 17onode quadrilateral element has been developed using the bivaxiate quaxtic spline interpolation basis and the triangular area coordinates, which can exactly model the quartic displacement fields. Some appropriate examples are employed to illustrate that the element possesses high precision and is insensitive to mesh distortions.展开更多
Several quadrilateral shape regular mesh conditions commonly used in the finite element method are proven to be equivalent. Their influence on the finite element interpolation error and the consistency error committe...Several quadrilateral shape regular mesh conditions commonly used in the finite element method are proven to be equivalent. Their influence on the finite element interpolation error and the consistency error committed by nonconforming finite elements are investigated. The effect of the Bi-Section Condition and its extended version (1+α)-Section Condition on the degenerate mesh conditions is also checked. The necessity of the Bi-Section Condition in finite elements is underpinned by means of counterexamples.展开更多
基金supported by the Natural Science Foundation of China China (Nos. 60533060, 10672032, and 10726067)the Science Foundation of Dalian University of Technology (No. SFDUT07001)
文摘Isopaxametric quadrilateral elements are widely used in the finite element method. However, they have a disadvantage of accuracy loss when elements are distorted. Spline functions have properties of simpleness and conformality. A 17onode quadrilateral element has been developed using the bivaxiate quaxtic spline interpolation basis and the triangular area coordinates, which can exactly model the quartic displacement fields. Some appropriate examples are employed to illustrate that the element possesses high precision and is insensitive to mesh distortions.
文摘Several quadrilateral shape regular mesh conditions commonly used in the finite element method are proven to be equivalent. Their influence on the finite element interpolation error and the consistency error committed by nonconforming finite elements are investigated. The effect of the Bi-Section Condition and its extended version (1+α)-Section Condition on the degenerate mesh conditions is also checked. The necessity of the Bi-Section Condition in finite elements is underpinned by means of counterexamples.