期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Hamiltonian type Lie bialgebras 被引量:8
1
作者 Bin XIN~(1+) Guang-ai SONG~2 Yu-cai SU~3 1 Department of Mathematics,Shanghai Jiao Tong University,Shanghai 200240,China 2 College of Mathematics and Information Science,Shandong Institute of Business and Technology,Yantai 264005,China 3 Department of Mathematics,University of Science and Technology of China,Hefei 230026,China 《Science China Mathematics》 SCIE 2007年第9期1267-1279,共13页
We first prove that,for any generalized Hamiltonian type Lie algebra H,the first co- homology group H^1(H,H(?)H) is trivial.We then show that all Lie bialgebra structures on H are triangular.
关键词 Lie bialgebra Yang-Baxter equation Hamiltonian Lie algebra 17B62 17B05 17b37 17B66
原文传递
The quantum general linear supergroup, canonical bases and Kazhdan-Lusztig polynomials
2
作者 ZHANG HeChun Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China 《Science China Mathematics》 SCIE 2009年第3期401-416,共16页
Canonical bases of the tensor powers of the natural $ U_q (\mathfrak{g}\mathfrak{l}_{m|n} ) $ -module V are constructed by adapting the work of Frenkel, Khovanov and Kirrilov to the quantum supergroup setting. This re... Canonical bases of the tensor powers of the natural $ U_q (\mathfrak{g}\mathfrak{l}_{m|n} ) $ -module V are constructed by adapting the work of Frenkel, Khovanov and Kirrilov to the quantum supergroup setting. This result is generalized in several directions. We first construct the canonical bases of the ?2-graded symmetric algebra of V and tensor powers of this superalgebra; then construct canonical bases for the superalgebra O q (M m|n ) of a quantum (m,n) × (m,n)-supermatrix; and finally deduce from the latter result the canonical basis of every irreducible tensor module for $ U_q (\mathfrak{g}\mathfrak{l}_{m|n} ) $ by applying a quantum analogue of the Borel-Weil construction. 展开更多
关键词 canonical basis crystal basis Kazhdan-Lusztig polynomial 17b37 81R50
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部