<div style="text-align:justify;"> A generalized optical filterless approach to achieve photonic generation of frequency 16-tupling millimeter-wave (mm-wave) signal based on two cascaded dual-parallel M...<div style="text-align:justify;"> A generalized optical filterless approach to achieve photonic generation of frequency 16-tupling millimeter-wave (mm-wave) signal based on two cascaded dual-parallel Mach-Zehnder modulators (DPMZMs) is presented. A theoretical analysis leading to the operating conditions to achieve frequency 16-tupling is developed. Different modulation indices (MIs) can be implemented to achieve the frequency multiplication by adjusting the delay of tunable optical delay line (TODL). It is confirmed by simulation that the proposed scheme is effective, and the radio frequency spurious suppression ratio (RFSSR) of the generated frequency 16-tupling signal can be as high as 40 dB when the sub-MZMs have extinction ratios of 30 dB. Influencing factors such as extinction ratio, DC bias drift, phase shift deviation and RF voltage deviation on the performance of optical sideband suppression ratio (OSSR) and RFSSR are also investigated. </div>展开更多
文摘<div style="text-align:justify;"> A generalized optical filterless approach to achieve photonic generation of frequency 16-tupling millimeter-wave (mm-wave) signal based on two cascaded dual-parallel Mach-Zehnder modulators (DPMZMs) is presented. A theoretical analysis leading to the operating conditions to achieve frequency 16-tupling is developed. Different modulation indices (MIs) can be implemented to achieve the frequency multiplication by adjusting the delay of tunable optical delay line (TODL). It is confirmed by simulation that the proposed scheme is effective, and the radio frequency spurious suppression ratio (RFSSR) of the generated frequency 16-tupling signal can be as high as 40 dB when the sub-MZMs have extinction ratios of 30 dB. Influencing factors such as extinction ratio, DC bias drift, phase shift deviation and RF voltage deviation on the performance of optical sideband suppression ratio (OSSR) and RFSSR are also investigated. </div>