期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于深度卷积网络与空洞卷积融合的人群计数 被引量:3
1
作者 盛馨心 苏颖 汪洋 《上海师范大学学报(自然科学版)》 2019年第5期479-484,共6页
利用空洞卷积设置不同空洞率,得到不同感受野的特点,提出一种基于深度卷积Visual Geometry Group19(VGG19)和空洞卷积相融合的结构.所采用的结构不受输入图像尺寸以及分辨率影响,通过设置锯齿状空洞率,扩大网络的感受野,在保持分辨率良... 利用空洞卷积设置不同空洞率,得到不同感受野的特点,提出一种基于深度卷积Visual Geometry Group19(VGG19)和空洞卷积相融合的结构.所采用的结构不受输入图像尺寸以及分辨率影响,通过设置锯齿状空洞率,扩大网络的感受野,在保持分辨率良好的情况下,可以较为精确地定位目标,提高检测准确性.经验证,该算法在Shanghai-tech标准数据集上具有较高的实验准确率. 展开更多
关键词 人群计数 VISUAL GEOMETRY Group19(vgg19) 空洞卷积 Shanghai-tech数据集
下载PDF
Glaucoma Detection with Retinal Fundus Images Using Segmentation and Classification 被引量:1
2
作者 Thisara Shyamalee Dulani Meedeniya 《Machine Intelligence Research》 EI CSCD 2022年第6期563-580,共18页
Glaucoma is a prevalent cause of blindness worldwide.If not treated promptly,it can cause vision and quality of life to deteriorate.According to statistics,glaucoma affects approximately 65 million individuals globall... Glaucoma is a prevalent cause of blindness worldwide.If not treated promptly,it can cause vision and quality of life to deteriorate.According to statistics,glaucoma affects approximately 65 million individuals globally.Fundus image segmentation depends on the optic disc(OD)and optic cup(OC).This paper proposes a computational model to segment and classify retinal fundus images for glaucoma detection.Different data augmentation techniques were applied to prevent overfitting while employing several data pre-processing approaches to improve the image quality and achieve high accuracy.The segmentation models are based on an attention U-Net with three separate convolutional neural networks(CNNs)backbones:Inception-v3,visual geometry group 19(VGG19),and residual neural network 50(ResNet50).The classification models also employ a modified version of the above three CNN architectures.Using the RIM-ONE dataset,the attention U-Net with the ResNet50 model as the encoder backbone,achieved the best accuracy of 99.58%in segmenting OD.The Inception-v3 model had the highest accuracy of 98.79%for glaucoma classification among the evaluated segmentation,followed by the modified classification architectures. 展开更多
关键词 Attention U-Net SEGMENTATION classification Inception-v3 visual geometry group 19(vgg19) residual neural network 50(ResNet50) GLAUCOMA fundus images
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部