The distribution of the immune system throughout the body complicates in vitro assessments of coronavirus disease 2019(COVID-19)immunobiology,often resulting in a lack of reproducibility when extrapolated to the whole...The distribution of the immune system throughout the body complicates in vitro assessments of coronavirus disease 2019(COVID-19)immunobiology,often resulting in a lack of reproducibility when extrapolated to the whole organism.Consequently,developing animal models is imperative for a comprehensive understanding of the pathology and immunology of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection.This review summarizes current progress related to COVID-19 animal models,including non-human primates(NHPs),mice,and hamsters,with a focus on their roles in exploring the mechanisms of immunopathology,immune protection,and long-term effects of SARS-CoV-2 infection,as well as their application in immunoprevention and immunotherapy of SARS-CoV-2 infection.Differences among these animal models and their specific applications are also highlighted,as no single model can fully encapsulate all aspects of COVID-19.To effectively address the challenges posed by COVID-19,it is essential to select appropriate animal models that can accurately replicate both fatal and non-fatal infections with varying courses and severities.Optimizing animal model libraries and associated research tools is key to resolving the global COVID-19 pandemic,serving as a robust resource for future emerging infectious diseases.展开更多
Deterministic compartment models(CMs)and stochastic models,including stochastic CMs and agent-based models,are widely utilized in epidemic modeling.However,the relationship between CMs and their corresponding stochast...Deterministic compartment models(CMs)and stochastic models,including stochastic CMs and agent-based models,are widely utilized in epidemic modeling.However,the relationship between CMs and their corresponding stochastic models is not well understood.The present study aimed to address this gap by conducting a comparative study using the susceptible,exposed,infectious,and recovered(SEIR)model and its extended CMs from the coronavirus disease 2019 modeling literature.We demonstrated the equivalence of the numerical solution of CMs using the Euler scheme and their stochastic counterparts through theoretical analysis and simulations.Based on this equivalence,we proposed an efficient model calibration method that could replicate the exact solution of CMs in the corresponding stochastic models through parameter adjustment.The advancement in calibration techniques enhanced the accuracy of stochastic modeling in capturing the dynamics of epidemics.However,it should be noted that discrete-time stochastic models cannot perfectly reproduce the exact solution of continuous-time CMs.Additionally,we proposed a new stochastic compartment and agent mixed model as an alternative to agent-based models for large-scale population simulations with a limited number of agents.This model offered a balance between computational efficiency and accuracy.The results of this research contributed to the comparison and unification of deterministic CMs and stochastic models in epidemic modeling.Furthermore,the results had implications for the development of hybrid models that integrated the strengths of both frameworks.Overall,the present study has provided valuable epidemic modeling techniques and their practical applications for understanding and controlling the spread of infectious diseases.展开更多
The global populationhas beenandwill continue to be severely impacted by theCOVID-19 epidemic.The primary objective of this research is to demonstrate the future impact of COVID-19 on those who suffer from other fatal...The global populationhas beenandwill continue to be severely impacted by theCOVID-19 epidemic.The primary objective of this research is to demonstrate the future impact of COVID-19 on those who suffer from other fatal conditions such as cancer,heart disease,and diabetes.Here,using ordinary differential equations(ODEs),two mathematical models are developed to explain the association between COVID-19 and cancer and between COVID-19 and diabetes and heart disease.After that,we highlight the stability assessments that can be applied to these models.Sensitivity analysis is used to examine how changes in certain factors impact different aspects of disease.The sensitivity analysis showed that many people are still nervous about seeing a doctor due to COVID-19,which could result in a dramatic increase in the diagnosis of various ailments in the years to come.The correlation between diabetes and cardiovascular illness is also illustrated graphically.The effects of smoking and obesity are also found to be significant in disease compartments.Model fitting is also provided for interpreting the relationship between real data and the results of thiswork.Diabetic people,in particular,need tomonitor their health conditions closely and practice heart health maintenance.People with heart diseases should undergo regular checks so that they can protect themselves from diabetes and take some precautions including suitable diets.The main purpose of this study is to emphasize the importance of regular checks,to warn people about the effects of COVID-19(including avoiding healthcare centers and doctors because of the spread of infectious diseases)and to indicate the importance of family history of cancer,heart diseases and diabetes.The provision of the recommendations requires an increase in public consciousness.展开更多
A patient co-infected with COVID-19 and viral hepatitis B can be atmore risk of severe complications than the one infected with a single infection.This study develops a comprehensive stochastic model to assess the epi...A patient co-infected with COVID-19 and viral hepatitis B can be atmore risk of severe complications than the one infected with a single infection.This study develops a comprehensive stochastic model to assess the epidemiological impact of vaccine booster doses on the co-dynamics of viral hepatitis B and COVID-19.The model is fitted to real COVID-19 data from Pakistan.The proposed model incorporates logistic growth and saturated incidence functions.Rigorous analyses using the tools of stochastic calculus,are performed to study appropriate conditions for the existence of unique global solutions,stationary distribution in the sense of ergodicity and disease extinction.The stochastic threshold estimated from the data fitting is given by:R_(0)^(S)=3.0651.Numerical assessments are implemented to illustrate the impact of double-dose vaccination and saturated incidence functions on the dynamics of both diseases.The effects of stochastic white noise intensities are also highlighted.展开更多
BACKGROUND The spread of the severe acute respiratory syndrome coronavirus 2 outbreak worldwide has caused concern regarding the mortality rate caused by the infection.The determinants of mortality on a global scale c...BACKGROUND The spread of the severe acute respiratory syndrome coronavirus 2 outbreak worldwide has caused concern regarding the mortality rate caused by the infection.The determinants of mortality on a global scale cannot be fully understood due to lack of information.AIM To identify key factors that may explain the variability in case lethality across countries.METHODS We identified 21 Potential risk factors for coronavirus disease 2019(COVID-19)case fatality rate for all the countries with available data.We examined univariate relationships of each variable with case fatality rate(CFR),and all independent variables to identify candidate variables for our final multiple model.Multiple regression analysis technique was used to assess the strength of relationship.RESULTS The mean of COVID-19 mortality was 1.52±1.72%.There was a statistically significant inverse correlation between health expenditure,and number of computed tomography scanners per 1 million with CFR,and significant direct correlation was found between literacy,and air pollution with CFR.This final model can predict approximately 97%of the changes in CFR.CONCLUSION The current study recommends some new predictors explaining affect mortality rate.Thus,it could help decision-makers develop health policies to fight COVID-19.展开更多
The outbreak of COVID-19 in 2019 resulted in numerous infections and deaths. In order to better study the transmission of COVID-19, this article adopts an improved fractional-order SIR model. Firstly, the properties o...The outbreak of COVID-19 in 2019 resulted in numerous infections and deaths. In order to better study the transmission of COVID-19, this article adopts an improved fractional-order SIR model. Firstly, the properties of the model are studied, including the feasible domain and bounded solutions of the system. Secondly, the stability of the system is discussed, among other things. Then, the GMMP method is introduced to obtain numerical solutions for the COVID-19 system and combined with the improved MH-NMSS-PSO parameter estimation method to fit the real data of Delhi, India from April 1, 2020 to June 30, 2020. The results show that the fitting effect is quite ideal. Finally, long-term predictions were made on the number of infections. We accurately estimate that the peak number of infections in Delhi, India, can reach around 2.1 million. This paper also compares the fitting performance of the integer-order COVID-19 model and the fractional-order COVID-19 model using the real data from Delhi. The results indicate that the fractional-order model with different orders, as we proposed, performs the best.展开更多
This study utilizes the Dynamic Conditional Correlation-Generalized Autoregressive Conditional Heteroskedasticity (DCC-GARCH) model to investigate the dynamic relationship between Chinese and U.S. stock markets amid t...This study utilizes the Dynamic Conditional Correlation-Generalized Autoregressive Conditional Heteroskedasticity (DCC-GARCH) model to investigate the dynamic relationship between Chinese and U.S. stock markets amid the COVID-19 pandemic. Initially, a univariate GARCH model is developed to derive residual sequences, which are then used to estimate the DCC model parameters. The research reveals a significant rise in the interconnection between the Chinese and U.S. stock markets during the pandemic. The S&P 500 index displayed higher sensitivity and greater volatility in response to the pandemic, whereas the CSI 300 index showed superior resilience and stability. Analysis and model estimation suggest that the market’s dependence on historical data has intensified and its sensitivity to recent shocks has heightened. Predictions from the model indicate increased market volatility during the pandemic. While the model is proficient in capturing market trends, there remains potential for enhancing the accuracy of specific volatility predictions. The study proposes recommendations for policymakers and investors, highlighting the importance of improved cooperation in international financial market regulation and investor education.展开更多
This paper investigates an improved SIR model for COVID-19 based on the Caputo fractional derivative. Firstly, the properties of the model are studied, including the feasible domain and bounded solutions of the system...This paper investigates an improved SIR model for COVID-19 based on the Caputo fractional derivative. Firstly, the properties of the model are studied, including the feasible domain and bounded solutions of the system. Secondly, the stability of the system is discussed, among other things. Then, the GMMP method is introduced to obtain numerical solutions for the COVID-19 system. Numerical simulations were conducted using MATLAB, and the results indicate that our model is valuable for studying virus transmission.展开更多
The global pandemic,coronavirus disease 2019(COVID-19),has significantly affected tourism,especially in Spain,as it was among the first countries to be affected by the pandemic and is among the world’s biggest touris...The global pandemic,coronavirus disease 2019(COVID-19),has significantly affected tourism,especially in Spain,as it was among the first countries to be affected by the pandemic and is among the world’s biggest tourist destinations.Stock market values are responding to the evolution of the pandemic,especially in the case of tourist companies.Therefore,being able to quantify this relationship allows us to predict the effect of the pandemic on shares in the tourism sector,thereby improving the response to the crisis by policymakers and investors.Accordingly,a dynamic regression model was developed to predict the behavior of shares in the Spanish tourism sector according to the evolution of the COVID-19 pandemic in the medium term.It has been confirmed that both the number of deaths and cases are good predictors of abnormal stock prices in the tourism sector.展开更多
In this work,the exponential approximation is used for the numerical simulation of a nonlinear SITR model as a system of differential equations that shows the dynamics of the new coronavirus(COVID-19).The SITR mathema...In this work,the exponential approximation is used for the numerical simulation of a nonlinear SITR model as a system of differential equations that shows the dynamics of the new coronavirus(COVID-19).The SITR mathematical model is divided into four classes using fractal parameters for COVID-19 dynamics,namely,susceptible(S),infected(I),treatment(T),and recovered(R).The main idea of the presented method is based on the matrix representations of the exponential functions and their derivatives using collocation points.To indicate the usefulness of this method,we employ it in some cases.For error analysis of the method,the residual of the solutions is reviewed.The reported examples show that the method is reasonably efficient and accurate.展开更多
目的 探讨2018版肝脏影像报告和数据系统(Liver Imaging Reporting and Data System version 2018,LI-RADS v2018)对肝细胞癌(hepatocellular carcinoma,HCC)细胞角蛋白19(cytokeratin 19,CK19)表达的术前预测及预后评估的价值。材料与...目的 探讨2018版肝脏影像报告和数据系统(Liver Imaging Reporting and Data System version 2018,LI-RADS v2018)对肝细胞癌(hepatocellular carcinoma,HCC)细胞角蛋白19(cytokeratin 19,CK19)表达的术前预测及预后评估的价值。材料与方法 回顾性分析220例术前接受MRI检查并经病理证实为HCC患者的临床、病理及影像资料,包括CK19阳性组59例,CK19阴性组161例。将患者按7∶3比例分为训练集和验证集。通过单因素与多因素logistic回归分析确定CK19阳性表达HCC的独立预测因素并构建列线图评分模型。采用受试者工作特征(receiver operating characteristic,ROC)曲线分析模型诊断效能,绘制校准曲线、决策曲线评价模型的校准性能和临床适用性。计算患者的列线图得分并进行高低风险分组,采用Kaplan-Meier生存曲线分析比较不同亚组患者的总体、早期及晚期无复发生存率。结果 晕状强化(OR=3.432,P=0.045)、环形动脉期高强化(OR=32.073,P=0.017)、靶样扩散受限(OR=12.941,P=0.006)、不光滑肿瘤边缘(OR=4.590,P=0.014)及肝胆期肿瘤-肝实质相对增强比(the relative enhancement ratio,RER)(OR=0.014,P=0.023)是CK19阳性表达HCC的独立预测因素。预测模型在训练集和验证集的曲线下面积(area under the curve,AUC)分别为0.884(95%CI:0.823~0.930)、0.748(95%CI:0.625~0.846),校准曲线、决策曲线显示模型的校准性能和临床适用性较好。CK19阳性与阴性组的总体无复发生存率、高与低风险组的总体、早期及晚期无复发生存率之间均存在显著差异(P<0.05)。结论 晕状强化、环形动脉期高强化、靶样扩散受限结合不光滑肿瘤边缘、肝胆期增强定量参数可对HCC的CK19表达进行术前风险预测,并有助于评估HCC术后复发。展开更多
Various data sets showing the prevalence of numerous viral diseases have demonstrated that the transmission is not truly homogeneous.Two examples are the spread of Spanish flu and COVID-19.The aimof this research is t...Various data sets showing the prevalence of numerous viral diseases have demonstrated that the transmission is not truly homogeneous.Two examples are the spread of Spanish flu and COVID-19.The aimof this research is to develop a comprehensive nonlinear stochastic model having six cohorts relying on ordinary differential equations via piecewise fractional differential operators.Firstly,the strength number of the deterministic case is carried out.Then,for the stochastic model,we show that there is a critical number RS0 that can predict virus persistence and infection eradication.Because of the peculiarity of this notion,an interesting way to ensure the existence and uniqueness of the global positive solution characterized by the stochastic COVID-19 model is established by creating a sequence of appropriate Lyapunov candidates.Adetailed ergodic stationary distribution for the stochastic COVID-19 model is provided.Our findings demonstrate a piecewise numerical technique to generate simulation studies for these frameworks.The collected outcomes leave no doubt that this conception is a revolutionary doorway that will assist mankind in good perspective nature.展开更多
目的基于传染病动力学SEAIQR(susceptible-exposed-asymptomatic-infected-quarantined-removed)模型和Dropout-LSTM(Dropout long short term memory network)模型预测西安市新型冠状病毒肺炎(COVID-19)疫情的发展趋势,为评估“动态清...目的基于传染病动力学SEAIQR(susceptible-exposed-asymptomatic-infected-quarantined-removed)模型和Dropout-LSTM(Dropout long short term memory network)模型预测西安市新型冠状病毒肺炎(COVID-19)疫情的发展趋势,为评估“动态清零”策略防控效果提供科学依据。方法考虑到西安市本轮疫情存在大量的无症状感染者、依时变化的参数以及采取的管控举措等特点,构建具有阶段性防控措施的时变SEAIQR模型。考虑到COVID-19疫情数据的时序性特征及它们之间的非线性关系,构建深度学习Dropout-LSTM模型。选用2021年12月9日-2022年1月31日西安市新增确诊病例数据进行拟合,用2022年2月1日-2022年2月7日数据评估预测效果,计算有效再生数(R_(t))并评价不同参数对疫情发展的影响。结果SEAIQR模型预测的新增确诊病例拐点预计在2021年12月26日出现,约为176例,疫情将于2022年1月24日实现“动态清零”,模型R^(2)=0.849。Dropout-LSTM模型能够体现数据的时序性与非线性特征,预测出的新增确诊病例数与实际情况高度吻合,R^(2)=0.937。Dropout-LSTM模型的MAE和RMSE均较SEAIQR模型低,说明预测结果更为理想。疫情暴发初期,R 0为5.63,自实施全面管控后,R_(t)呈逐渐下降趋势,直到2021年12月27日降至1.0以下。随着有效接触率不断缩小、管控措施的提早实施及免疫阈值的提高,新增确诊病例在到达拐点时的人数将会持续降低。结论建立的Dropout-LSTM模型实现了较准确的疫情预测,可为COVID-19疫情“动态清零”防控决策提供借鉴。展开更多
The Coronavirus Disease(COVID-19)pandemic has exposed the vulnerabilities of medical services across the globe,especially in underdeveloped nations.In the aftermath of the COVID-19 outbreak,a strong demand exists for ...The Coronavirus Disease(COVID-19)pandemic has exposed the vulnerabilities of medical services across the globe,especially in underdeveloped nations.In the aftermath of the COVID-19 outbreak,a strong demand exists for developing novel computer-assisted diagnostic tools to execute rapid and cost-effective screenings in locations where many screenings cannot be executed using conventional methods.Medical imaging has become a crucial component in the disease diagnosis process,whereas X-rays and Computed Tomography(CT)scan imaging are employed in a deep network to diagnose the diseases.In general,four steps are followed in image-based diagnostics and disease classification processes by making use of the neural networks,such as network training,feature extraction,model performance testing and optimal feature selection.The current research article devises a Chaotic Flower Pollination Algorithm with a Deep Learning-Driven Fusion(CFPADLDF)approach for detecting and classifying COVID-19.The presented CFPA-DLDF model is developed by integrating two DL models to recognize COVID-19 in medical images.Initially,the proposed CFPA-DLDF technique employs the Gabor Filtering(GF)approach to pre-process the input images.In addition,a weighted voting-based ensemble model is employed for feature extraction,in which both VGG-19 and the MixNet models are included.Finally,the CFPA with Recurrent Neural Network(RNN)model is utilized for classification,showing the work’s novelty.A comparative analysis was conducted to demonstrate the enhanced performance of the proposed CFPADLDF model,and the results established the supremacy of the proposed CFPA-DLDF model over recent approaches.展开更多
In this paper we provide different types of approach in mathematical biology about infection disease and understanding the dynamic of epidemic mathematical models specially in COVID-19 disease which first outbroke in ...In this paper we provide different types of approach in mathematical biology about infection disease and understanding the dynamic of epidemic mathematical models specially in COVID-19 disease which first outbroke in China and fast spread around the world. We work in the connection between the mathematical models and the solution analytically and numerically. At first, we emphasize the Susceptible-Infectious-Recovered (SIR) models’ extension for policy significance. Then, we found the improved SIER model done by research. In third section, we examine the improved model when an appropriate vaccine has been found, we introduce the model of SIR with vaccine term which ends up with discussion and conclusion about the effect of vaccinate. The comprehension of COVID-19 transmission methods, structures, and characteristics is greatly aided by these mathematical models analytically and numerically.展开更多
New fractional operators, the COVID-19 model has been studied in this paper. By using different numericaltechniques and the time fractional parameters, the mechanical characteristics of the fractional order model arei...New fractional operators, the COVID-19 model has been studied in this paper. By using different numericaltechniques and the time fractional parameters, the mechanical characteristics of the fractional order model areidentified. The uniqueness and existence have been established. Themodel’sUlam-Hyers stability analysis has beenfound. In order to justify the theoretical results, numerical simulations are carried out for the presented methodin the range of fractional order to show the implications of fractional and fractal orders.We applied very effectivenumerical techniques to obtain the solutions of themodel and simulations. Also, we present conditions of existencefor a solution to the proposed epidemicmodel and to calculate the reproduction number in certain state conditionsof the analyzed dynamic system. COVID-19 fractional order model for the case of Wuhan, China, is offered foranalysis with simulations in order to determine the possible efficacy of Coronavirus disease transmission in theCommunity. For this reason, we employed the COVID-19 fractal fractional derivative model in the example ofWuhan, China, with the given beginning conditions. In conclusion, again the mathematical models with fractionaloperators can facilitate the improvement of decision-making for measures to be taken in the management of anepidemic situation.展开更多
Covid-19 is a deadly virus that is rapidly spread around the world towards the end of the 2020.The consequences of this virus are quite frightening,especially when accompanied by an underlying disease.The novelty of t...Covid-19 is a deadly virus that is rapidly spread around the world towards the end of the 2020.The consequences of this virus are quite frightening,especially when accompanied by an underlying disease.The novelty of the virus,the constant emergence of different variants and its rapid spread have a negative impact on the control and treatment process.Although the new test kits provide almost certain results,chest X-rays are extremely important to detect the progression and degree of the disease.In addition to the Covid-19 virus,pneumonia and harmless opacity of the lungs also complicate the diagnosis.Considering the negative results caused by the virus and the treatment costs,the importance of fast and accurate diagnosis is clearly seen.In this context,deep learning methods appear as an extremely popular approach.In this study,a hybrid model design with superior properties of convolutional neural networks is presented to correctly classify the Covid-19 disease.In addition,in order to contribute to the literature,a suitable dataset with balanced case numbers that can be used in all artificial intelligence classification studies is presented.With this ensemble model design,quite remarkable results are obtained for the diagnosis of three and four-class Covid-19.The proposed model can classify normal,pneumonia,and Covid-19 with 92.6%accuracy and 82.6%for normal,pneumonia,Covid-19,and lung opacity.展开更多
The rational and effective implementation of epidemic prevention and control measures is crucial to controlling the spread of COVID-19, and vaccination is a key part to be considered in the development of epidemic pre...The rational and effective implementation of epidemic prevention and control measures is crucial to controlling the spread of COVID-19, and vaccination is a key part to be considered in the development of epidemic prevention and control strategies. In order to give full play to the greater role of vaccination strategies in epidemic prevention and control, more accurate and efficient vaccination strategies should be explored. Based on the classical SEIR dynamic model, this paper established a COVID-19 dynamic model of population age structure in the form of population grouping and combined with the transmission characteristics of the COVID-19 epidemic. An optimization model with the goal of minimizing daily infection was established to analyze the optimization studies on infection-related specificity of vaccination for different age groups under the condition of limited daily vaccine supply at the early stage of the epidemic, and to obtain the priority of vaccination strategies for Chinese age groups. And the effect of the heterogeneity of infection rate and hospitalization rate on the priority of vaccine allocation.展开更多
基金National Key Research and Development Program of China(2022YFC2303700,2021YFC2301300)Yunnan Key Research and Development Program(202303AC100026)+2 种基金National Natural Science Foundation of China(82302002,82341069)Yunnan Fundamental Research Project(202201AS070047)Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0490000)。
文摘The distribution of the immune system throughout the body complicates in vitro assessments of coronavirus disease 2019(COVID-19)immunobiology,often resulting in a lack of reproducibility when extrapolated to the whole organism.Consequently,developing animal models is imperative for a comprehensive understanding of the pathology and immunology of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection.This review summarizes current progress related to COVID-19 animal models,including non-human primates(NHPs),mice,and hamsters,with a focus on their roles in exploring the mechanisms of immunopathology,immune protection,and long-term effects of SARS-CoV-2 infection,as well as their application in immunoprevention and immunotherapy of SARS-CoV-2 infection.Differences among these animal models and their specific applications are also highlighted,as no single model can fully encapsulate all aspects of COVID-19.To effectively address the challenges posed by COVID-19,it is essential to select appropriate animal models that can accurately replicate both fatal and non-fatal infections with varying courses and severities.Optimizing animal model libraries and associated research tools is key to resolving the global COVID-19 pandemic,serving as a robust resource for future emerging infectious diseases.
基金supported by the National Natural Science Foundation of China(Grant Nos.82173620 to Yang Zhao and 82041024 to Feng Chen)partially supported by the Bill&Melinda Gates Foundation(Grant No.INV-006371 to Feng Chen)Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Deterministic compartment models(CMs)and stochastic models,including stochastic CMs and agent-based models,are widely utilized in epidemic modeling.However,the relationship between CMs and their corresponding stochastic models is not well understood.The present study aimed to address this gap by conducting a comparative study using the susceptible,exposed,infectious,and recovered(SEIR)model and its extended CMs from the coronavirus disease 2019 modeling literature.We demonstrated the equivalence of the numerical solution of CMs using the Euler scheme and their stochastic counterparts through theoretical analysis and simulations.Based on this equivalence,we proposed an efficient model calibration method that could replicate the exact solution of CMs in the corresponding stochastic models through parameter adjustment.The advancement in calibration techniques enhanced the accuracy of stochastic modeling in capturing the dynamics of epidemics.However,it should be noted that discrete-time stochastic models cannot perfectly reproduce the exact solution of continuous-time CMs.Additionally,we proposed a new stochastic compartment and agent mixed model as an alternative to agent-based models for large-scale population simulations with a limited number of agents.This model offered a balance between computational efficiency and accuracy.The results of this research contributed to the comparison and unification of deterministic CMs and stochastic models in epidemic modeling.Furthermore,the results had implications for the development of hybrid models that integrated the strengths of both frameworks.Overall,the present study has provided valuable epidemic modeling techniques and their practical applications for understanding and controlling the spread of infectious diseases.
文摘The global populationhas beenandwill continue to be severely impacted by theCOVID-19 epidemic.The primary objective of this research is to demonstrate the future impact of COVID-19 on those who suffer from other fatal conditions such as cancer,heart disease,and diabetes.Here,using ordinary differential equations(ODEs),two mathematical models are developed to explain the association between COVID-19 and cancer and between COVID-19 and diabetes and heart disease.After that,we highlight the stability assessments that can be applied to these models.Sensitivity analysis is used to examine how changes in certain factors impact different aspects of disease.The sensitivity analysis showed that many people are still nervous about seeing a doctor due to COVID-19,which could result in a dramatic increase in the diagnosis of various ailments in the years to come.The correlation between diabetes and cardiovascular illness is also illustrated graphically.The effects of smoking and obesity are also found to be significant in disease compartments.Model fitting is also provided for interpreting the relationship between real data and the results of thiswork.Diabetic people,in particular,need tomonitor their health conditions closely and practice heart health maintenance.People with heart diseases should undergo regular checks so that they can protect themselves from diabetes and take some precautions including suitable diets.The main purpose of this study is to emphasize the importance of regular checks,to warn people about the effects of COVID-19(including avoiding healthcare centers and doctors because of the spread of infectious diseases)and to indicate the importance of family history of cancer,heart diseases and diabetes.The provision of the recommendations requires an increase in public consciousness.
文摘A patient co-infected with COVID-19 and viral hepatitis B can be atmore risk of severe complications than the one infected with a single infection.This study develops a comprehensive stochastic model to assess the epidemiological impact of vaccine booster doses on the co-dynamics of viral hepatitis B and COVID-19.The model is fitted to real COVID-19 data from Pakistan.The proposed model incorporates logistic growth and saturated incidence functions.Rigorous analyses using the tools of stochastic calculus,are performed to study appropriate conditions for the existence of unique global solutions,stationary distribution in the sense of ergodicity and disease extinction.The stochastic threshold estimated from the data fitting is given by:R_(0)^(S)=3.0651.Numerical assessments are implemented to illustrate the impact of double-dose vaccination and saturated incidence functions on the dynamics of both diseases.The effects of stochastic white noise intensities are also highlighted.
文摘BACKGROUND The spread of the severe acute respiratory syndrome coronavirus 2 outbreak worldwide has caused concern regarding the mortality rate caused by the infection.The determinants of mortality on a global scale cannot be fully understood due to lack of information.AIM To identify key factors that may explain the variability in case lethality across countries.METHODS We identified 21 Potential risk factors for coronavirus disease 2019(COVID-19)case fatality rate for all the countries with available data.We examined univariate relationships of each variable with case fatality rate(CFR),and all independent variables to identify candidate variables for our final multiple model.Multiple regression analysis technique was used to assess the strength of relationship.RESULTS The mean of COVID-19 mortality was 1.52±1.72%.There was a statistically significant inverse correlation between health expenditure,and number of computed tomography scanners per 1 million with CFR,and significant direct correlation was found between literacy,and air pollution with CFR.This final model can predict approximately 97%of the changes in CFR.CONCLUSION The current study recommends some new predictors explaining affect mortality rate.Thus,it could help decision-makers develop health policies to fight COVID-19.
文摘The outbreak of COVID-19 in 2019 resulted in numerous infections and deaths. In order to better study the transmission of COVID-19, this article adopts an improved fractional-order SIR model. Firstly, the properties of the model are studied, including the feasible domain and bounded solutions of the system. Secondly, the stability of the system is discussed, among other things. Then, the GMMP method is introduced to obtain numerical solutions for the COVID-19 system and combined with the improved MH-NMSS-PSO parameter estimation method to fit the real data of Delhi, India from April 1, 2020 to June 30, 2020. The results show that the fitting effect is quite ideal. Finally, long-term predictions were made on the number of infections. We accurately estimate that the peak number of infections in Delhi, India, can reach around 2.1 million. This paper also compares the fitting performance of the integer-order COVID-19 model and the fractional-order COVID-19 model using the real data from Delhi. The results indicate that the fractional-order model with different orders, as we proposed, performs the best.
文摘This study utilizes the Dynamic Conditional Correlation-Generalized Autoregressive Conditional Heteroskedasticity (DCC-GARCH) model to investigate the dynamic relationship between Chinese and U.S. stock markets amid the COVID-19 pandemic. Initially, a univariate GARCH model is developed to derive residual sequences, which are then used to estimate the DCC model parameters. The research reveals a significant rise in the interconnection between the Chinese and U.S. stock markets during the pandemic. The S&P 500 index displayed higher sensitivity and greater volatility in response to the pandemic, whereas the CSI 300 index showed superior resilience and stability. Analysis and model estimation suggest that the market’s dependence on historical data has intensified and its sensitivity to recent shocks has heightened. Predictions from the model indicate increased market volatility during the pandemic. While the model is proficient in capturing market trends, there remains potential for enhancing the accuracy of specific volatility predictions. The study proposes recommendations for policymakers and investors, highlighting the importance of improved cooperation in international financial market regulation and investor education.
文摘This paper investigates an improved SIR model for COVID-19 based on the Caputo fractional derivative. Firstly, the properties of the model are studied, including the feasible domain and bounded solutions of the system. Secondly, the stability of the system is discussed, among other things. Then, the GMMP method is introduced to obtain numerical solutions for the COVID-19 system. Numerical simulations were conducted using MATLAB, and the results indicate that our model is valuable for studying virus transmission.
文摘The global pandemic,coronavirus disease 2019(COVID-19),has significantly affected tourism,especially in Spain,as it was among the first countries to be affected by the pandemic and is among the world’s biggest tourist destinations.Stock market values are responding to the evolution of the pandemic,especially in the case of tourist companies.Therefore,being able to quantify this relationship allows us to predict the effect of the pandemic on shares in the tourism sector,thereby improving the response to the crisis by policymakers and investors.Accordingly,a dynamic regression model was developed to predict the behavior of shares in the Spanish tourism sector according to the evolution of the COVID-19 pandemic in the medium term.It has been confirmed that both the number of deaths and cases are good predictors of abnormal stock prices in the tourism sector.
文摘In this work,the exponential approximation is used for the numerical simulation of a nonlinear SITR model as a system of differential equations that shows the dynamics of the new coronavirus(COVID-19).The SITR mathematical model is divided into four classes using fractal parameters for COVID-19 dynamics,namely,susceptible(S),infected(I),treatment(T),and recovered(R).The main idea of the presented method is based on the matrix representations of the exponential functions and their derivatives using collocation points.To indicate the usefulness of this method,we employ it in some cases.For error analysis of the method,the residual of the solutions is reviewed.The reported examples show that the method is reasonably efficient and accurate.
文摘目的 探讨2018版肝脏影像报告和数据系统(Liver Imaging Reporting and Data System version 2018,LI-RADS v2018)对肝细胞癌(hepatocellular carcinoma,HCC)细胞角蛋白19(cytokeratin 19,CK19)表达的术前预测及预后评估的价值。材料与方法 回顾性分析220例术前接受MRI检查并经病理证实为HCC患者的临床、病理及影像资料,包括CK19阳性组59例,CK19阴性组161例。将患者按7∶3比例分为训练集和验证集。通过单因素与多因素logistic回归分析确定CK19阳性表达HCC的独立预测因素并构建列线图评分模型。采用受试者工作特征(receiver operating characteristic,ROC)曲线分析模型诊断效能,绘制校准曲线、决策曲线评价模型的校准性能和临床适用性。计算患者的列线图得分并进行高低风险分组,采用Kaplan-Meier生存曲线分析比较不同亚组患者的总体、早期及晚期无复发生存率。结果 晕状强化(OR=3.432,P=0.045)、环形动脉期高强化(OR=32.073,P=0.017)、靶样扩散受限(OR=12.941,P=0.006)、不光滑肿瘤边缘(OR=4.590,P=0.014)及肝胆期肿瘤-肝实质相对增强比(the relative enhancement ratio,RER)(OR=0.014,P=0.023)是CK19阳性表达HCC的独立预测因素。预测模型在训练集和验证集的曲线下面积(area under the curve,AUC)分别为0.884(95%CI:0.823~0.930)、0.748(95%CI:0.625~0.846),校准曲线、决策曲线显示模型的校准性能和临床适用性较好。CK19阳性与阴性组的总体无复发生存率、高与低风险组的总体、早期及晚期无复发生存率之间均存在显著差异(P<0.05)。结论 晕状强化、环形动脉期高强化、靶样扩散受限结合不光滑肿瘤边缘、肝胆期增强定量参数可对HCC的CK19表达进行术前风险预测,并有助于评估HCC术后复发。
文摘Various data sets showing the prevalence of numerous viral diseases have demonstrated that the transmission is not truly homogeneous.Two examples are the spread of Spanish flu and COVID-19.The aimof this research is to develop a comprehensive nonlinear stochastic model having six cohorts relying on ordinary differential equations via piecewise fractional differential operators.Firstly,the strength number of the deterministic case is carried out.Then,for the stochastic model,we show that there is a critical number RS0 that can predict virus persistence and infection eradication.Because of the peculiarity of this notion,an interesting way to ensure the existence and uniqueness of the global positive solution characterized by the stochastic COVID-19 model is established by creating a sequence of appropriate Lyapunov candidates.Adetailed ergodic stationary distribution for the stochastic COVID-19 model is provided.Our findings demonstrate a piecewise numerical technique to generate simulation studies for these frameworks.The collected outcomes leave no doubt that this conception is a revolutionary doorway that will assist mankind in good perspective nature.
文摘目的基于传染病动力学SEAIQR(susceptible-exposed-asymptomatic-infected-quarantined-removed)模型和Dropout-LSTM(Dropout long short term memory network)模型预测西安市新型冠状病毒肺炎(COVID-19)疫情的发展趋势,为评估“动态清零”策略防控效果提供科学依据。方法考虑到西安市本轮疫情存在大量的无症状感染者、依时变化的参数以及采取的管控举措等特点,构建具有阶段性防控措施的时变SEAIQR模型。考虑到COVID-19疫情数据的时序性特征及它们之间的非线性关系,构建深度学习Dropout-LSTM模型。选用2021年12月9日-2022年1月31日西安市新增确诊病例数据进行拟合,用2022年2月1日-2022年2月7日数据评估预测效果,计算有效再生数(R_(t))并评价不同参数对疫情发展的影响。结果SEAIQR模型预测的新增确诊病例拐点预计在2021年12月26日出现,约为176例,疫情将于2022年1月24日实现“动态清零”,模型R^(2)=0.849。Dropout-LSTM模型能够体现数据的时序性与非线性特征,预测出的新增确诊病例数与实际情况高度吻合,R^(2)=0.937。Dropout-LSTM模型的MAE和RMSE均较SEAIQR模型低,说明预测结果更为理想。疫情暴发初期,R 0为5.63,自实施全面管控后,R_(t)呈逐渐下降趋势,直到2021年12月27日降至1.0以下。随着有效接触率不断缩小、管控措施的提早实施及免疫阈值的提高,新增确诊病例在到达拐点时的人数将会持续降低。结论建立的Dropout-LSTM模型实现了较准确的疫情预测,可为COVID-19疫情“动态清零”防控决策提供借鉴。
文摘The Coronavirus Disease(COVID-19)pandemic has exposed the vulnerabilities of medical services across the globe,especially in underdeveloped nations.In the aftermath of the COVID-19 outbreak,a strong demand exists for developing novel computer-assisted diagnostic tools to execute rapid and cost-effective screenings in locations where many screenings cannot be executed using conventional methods.Medical imaging has become a crucial component in the disease diagnosis process,whereas X-rays and Computed Tomography(CT)scan imaging are employed in a deep network to diagnose the diseases.In general,four steps are followed in image-based diagnostics and disease classification processes by making use of the neural networks,such as network training,feature extraction,model performance testing and optimal feature selection.The current research article devises a Chaotic Flower Pollination Algorithm with a Deep Learning-Driven Fusion(CFPADLDF)approach for detecting and classifying COVID-19.The presented CFPA-DLDF model is developed by integrating two DL models to recognize COVID-19 in medical images.Initially,the proposed CFPA-DLDF technique employs the Gabor Filtering(GF)approach to pre-process the input images.In addition,a weighted voting-based ensemble model is employed for feature extraction,in which both VGG-19 and the MixNet models are included.Finally,the CFPA with Recurrent Neural Network(RNN)model is utilized for classification,showing the work’s novelty.A comparative analysis was conducted to demonstrate the enhanced performance of the proposed CFPADLDF model,and the results established the supremacy of the proposed CFPA-DLDF model over recent approaches.
文摘In this paper we provide different types of approach in mathematical biology about infection disease and understanding the dynamic of epidemic mathematical models specially in COVID-19 disease which first outbroke in China and fast spread around the world. We work in the connection between the mathematical models and the solution analytically and numerically. At first, we emphasize the Susceptible-Infectious-Recovered (SIR) models’ extension for policy significance. Then, we found the improved SIER model done by research. In third section, we examine the improved model when an appropriate vaccine has been found, we introduce the model of SIR with vaccine term which ends up with discussion and conclusion about the effect of vaccinate. The comprehension of COVID-19 transmission methods, structures, and characteristics is greatly aided by these mathematical models analytically and numerically.
基金Lucian Blaga University of Sibiu&Hasso Plattner Foundation Research Grants LBUS-IRG-2020-06.
文摘New fractional operators, the COVID-19 model has been studied in this paper. By using different numericaltechniques and the time fractional parameters, the mechanical characteristics of the fractional order model areidentified. The uniqueness and existence have been established. Themodel’sUlam-Hyers stability analysis has beenfound. In order to justify the theoretical results, numerical simulations are carried out for the presented methodin the range of fractional order to show the implications of fractional and fractal orders.We applied very effectivenumerical techniques to obtain the solutions of themodel and simulations. Also, we present conditions of existencefor a solution to the proposed epidemicmodel and to calculate the reproduction number in certain state conditionsof the analyzed dynamic system. COVID-19 fractional order model for the case of Wuhan, China, is offered foranalysis with simulations in order to determine the possible efficacy of Coronavirus disease transmission in theCommunity. For this reason, we employed the COVID-19 fractal fractional derivative model in the example ofWuhan, China, with the given beginning conditions. In conclusion, again the mathematical models with fractionaloperators can facilitate the improvement of decision-making for measures to be taken in the management of anepidemic situation.
文摘Covid-19 is a deadly virus that is rapidly spread around the world towards the end of the 2020.The consequences of this virus are quite frightening,especially when accompanied by an underlying disease.The novelty of the virus,the constant emergence of different variants and its rapid spread have a negative impact on the control and treatment process.Although the new test kits provide almost certain results,chest X-rays are extremely important to detect the progression and degree of the disease.In addition to the Covid-19 virus,pneumonia and harmless opacity of the lungs also complicate the diagnosis.Considering the negative results caused by the virus and the treatment costs,the importance of fast and accurate diagnosis is clearly seen.In this context,deep learning methods appear as an extremely popular approach.In this study,a hybrid model design with superior properties of convolutional neural networks is presented to correctly classify the Covid-19 disease.In addition,in order to contribute to the literature,a suitable dataset with balanced case numbers that can be used in all artificial intelligence classification studies is presented.With this ensemble model design,quite remarkable results are obtained for the diagnosis of three and four-class Covid-19.The proposed model can classify normal,pneumonia,and Covid-19 with 92.6%accuracy and 82.6%for normal,pneumonia,Covid-19,and lung opacity.
文摘The rational and effective implementation of epidemic prevention and control measures is crucial to controlling the spread of COVID-19, and vaccination is a key part to be considered in the development of epidemic prevention and control strategies. In order to give full play to the greater role of vaccination strategies in epidemic prevention and control, more accurate and efficient vaccination strategies should be explored. Based on the classical SEIR dynamic model, this paper established a COVID-19 dynamic model of population age structure in the form of population grouping and combined with the transmission characteristics of the COVID-19 epidemic. An optimization model with the goal of minimizing daily infection was established to analyze the optimization studies on infection-related specificity of vaccination for different age groups under the condition of limited daily vaccine supply at the early stage of the epidemic, and to obtain the priority of vaccination strategies for Chinese age groups. And the effect of the heterogeneity of infection rate and hospitalization rate on the priority of vaccine allocation.