In the one-color experiment at 193nm, we studied the photodissociation of Si2+ ions prepared by two-photon ionization using the time-sliced ion velocity map imaging method. The Si+ imaging study shows that Si2+ dissoc...In the one-color experiment at 193nm, we studied the photodissociation of Si2+ ions prepared by two-photon ionization using the time-sliced ion velocity map imaging method. The Si+ imaging study shows that Si2+ dissociation results in two distinct channels: Si(3Pg)+Si+(2Pu) and Si(1D2)+Si+(2Pu). The main channel Si(3Pg)+Si+(2Pu)) is produced by the dissociation of the Si2+ ions in more than one energetically available excited electronic state, which are from the ionization of Si2(v=0-5). Particularly, the dissociation from the vibrationally excited Si2(v=1) shows the strongest signal. In contrast, the minor Si(1D2)+Si+(2Pu) channel is due to an avoided crossing between the two 22Πg states in the same symmetry. It has also been observed the one-photon dissociation of Si2+(X4Σg-) into Si(1D2)+Si+(2Pu) products with a large kinetic energy release.展开更多
基金supported by the National Natural Science Foundation of China (No.21673047, No.21327901, and No.21322309)the Shanghai Key Laboratory Foundation of Molecular Catalysis and Innovative Materialsthe Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning
文摘In the one-color experiment at 193nm, we studied the photodissociation of Si2+ ions prepared by two-photon ionization using the time-sliced ion velocity map imaging method. The Si+ imaging study shows that Si2+ dissociation results in two distinct channels: Si(3Pg)+Si+(2Pu) and Si(1D2)+Si+(2Pu). The main channel Si(3Pg)+Si+(2Pu)) is produced by the dissociation of the Si2+ ions in more than one energetically available excited electronic state, which are from the ionization of Si2(v=0-5). Particularly, the dissociation from the vibrationally excited Si2(v=1) shows the strongest signal. In contrast, the minor Si(1D2)+Si+(2Pu) channel is due to an avoided crossing between the two 22Πg states in the same symmetry. It has also been observed the one-photon dissociation of Si2+(X4Σg-) into Si(1D2)+Si+(2Pu) products with a large kinetic energy release.