In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the e...In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the extraction of basic features.The images captured by wearable sensors contain advanced features,allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions.Poor lighting and limited sensor capabilities can impact data quality,making the recognition of human actions a challenging task.The unimodal-based HAR approaches are not suitable in a real-time environment.Therefore,an updated HAR model is developed using multiple types of data and an advanced deep-learning approach.Firstly,the required signals and sensor data are accumulated from the standard databases.From these signals,the wave features are retrieved.Then the extracted wave features and sensor data are given as the input to recognize the human activity.An Adaptive Hybrid Deep Attentive Network(AHDAN)is developed by incorporating a“1D Convolutional Neural Network(1DCNN)”with a“Gated Recurrent Unit(GRU)”for the human activity recognition process.Additionally,the Enhanced Archerfish Hunting Optimizer(EAHO)is suggested to fine-tune the network parameters for enhancing the recognition process.An experimental evaluation is performed on various deep learning networks and heuristic algorithms to confirm the effectiveness of the proposed HAR model.The EAHO-based HAR model outperforms traditional deep learning networks with an accuracy of 95.36,95.25 for recall,95.48 for specificity,and 95.47 for precision,respectively.The result proved that the developed model is effective in recognizing human action by taking less time.Additionally,it reduces the computation complexity and overfitting issue through using an optimization approach.展开更多
Memristor-based neuromorphic computing shows great potential for high-speed and high-throughput signal processing applications,such as electroencephalogram(EEG)signal processing.Nonetheless,the size of one-transistor ...Memristor-based neuromorphic computing shows great potential for high-speed and high-throughput signal processing applications,such as electroencephalogram(EEG)signal processing.Nonetheless,the size of one-transistor one-resistor(1T1R)memristor arrays is limited by the non-ideality of the devices,which prevents the hardware implementation of large and complex networks.In this work,we propose the depthwise separable convolution and bidirectional gate recurrent unit(DSC-BiGRU)network,a lightweight and highly robust hybrid neural network based on 1T1R arrays that enables efficient processing of EEG signals in the temporal,frequency and spatial domains by hybridizing DSC and BiGRU blocks.The network size is reduced and the network robustness is improved while ensuring the network classification accuracy.In the simulation,the measured non-idealities of the 1T1R array are brought into the network through statistical analysis.Compared with traditional convolutional networks,the network parameters are reduced by 95%and the network classification accuracy is improved by 21%at a 95%array yield rate and 5%tolerable error.This work demonstrates that lightweight and highly robust networks based on memristor arrays hold great promise for applications that rely on low consumption and high efficiency.展开更多
By defining fuzzy valued simple functions and giving L1(μ) approximations of fuzzy valued integrably bounded functions by such simple functions, the paper analyses by L1(μ)-norm the approximation capability of four-...By defining fuzzy valued simple functions and giving L1(μ) approximations of fuzzy valued integrably bounded functions by such simple functions, the paper analyses by L1(μ)-norm the approximation capability of four-layer feedforward regular fuzzy neural networks to the fuzzy valued integrably bounded function F : Rn → FcO(R). That is, if the transfer functionσ: R→R is non-polynomial and integrable function on each finite interval, F may be innorm approximated by fuzzy valued functions defined as to anydegree of accuracy. Finally some real examples demonstrate the conclusions.展开更多
Integrated with sensors,processors,and radio frequency(RF)communication modules,intelligent bearing could achieve the autonomous perception and autonomous decision-making,guarantying the safety and reliability during ...Integrated with sensors,processors,and radio frequency(RF)communication modules,intelligent bearing could achieve the autonomous perception and autonomous decision-making,guarantying the safety and reliability during their use.However,because of the resource limitations of the end device,processors in the intelligent bearing are unable to carry the computational load of deep learning models like convolutional neural network(CNN),which involves a great amount of multiplicative operations.To minimize the computation cost of the conventional CNN,based on the idea of AdderNet,a 1-D adder neural network with a wide first-layer kernel(WAddNN)suitable for bearing fault diagnosis is proposed in this paper.The proposed method uses the l1-norm distance between filters and input features as the output response,thus making the whole network almost free of multiplicative operations.The whole model takes the original signal as the input,uses a wide kernel in the first adder layer to extract features and suppress the high frequency noise,and then uses two layers of small kernels for nonlinear mapping.Through experimental comparison with CNN models of the same structure,WAddNN is able to achieve a similar accuracy as CNN models with significantly reduced computational cost.The proposed model provides a new fault diagnosis method for intelligent bearings with limited resources.展开更多
0-1 programming is a special case of the integer programming, which is commonly encountered in many optimization problems. Neural network and its general energy function are presented for 0-1 optimization problem. The...0-1 programming is a special case of the integer programming, which is commonly encountered in many optimization problems. Neural network and its general energy function are presented for 0-1 optimization problem. Then, the 0-1 optimization problems are solved by a neural network model with transient chaotic dynamics (TCNN). Numerical simulations of two typical 0-1 optimization problems show that TCNN can overcome HNN's main drawbacks that it suffers from the local minimum and can search for the global optimal solutions in to solveing 0-1 optimization problems.展开更多
With the rapid growth of the Internet in recent years, the ability to analyze and identify its users has become increasingly important. Authorship analysis provides a means to glean information about the author of a d...With the rapid growth of the Internet in recent years, the ability to analyze and identify its users has become increasingly important. Authorship analysis provides a means to glean information about the author of a document originating from the internet or elsewhere, including but not limited to the author’s gender. There are well-known linguistic differences between the writing of men and women, and these differences can be effectively used to predict the gender of a document’s author. Capitalizing on these linguistic nuances, this study uses a set of stylometric features and a set of word count features to facilitate automatic gender discrimination on emails from the popular Enron email dataset. These features are used in conjunction with the Modified Balanced Winnow Neural Network proposed by Carvalho and Cohen, an improvement on the original Balanced Winnow created by Littlestone. Experiments with the Modified Balanced Winnow show that it is effectively able to discriminate gender using both stylometric and word count features, with the word count features providing superior results.展开更多
Due to the increasing variety of information and services carried by optical networks, the survivability of network becomes an important problem in current research. The fault location of OTN is of great significance ...Due to the increasing variety of information and services carried by optical networks, the survivability of network becomes an important problem in current research. The fault location of OTN is of great significance for studying the survivability of optical networks. Firstly, a three-channel network model is established and analyzing common alarm data, the fault monitoring points and common fault points are carried out. The artificial neural network is introduced into the fault location field of OTN and it is used to judge whether the possible fault point exists or not. But one of the obvious limitations of general neural networks is that they receive a fixedsize vector as input and produce a fixed-size vector as the output. Not only that, these models is even fixed for mapping operations (for example, the number of layers in the model). The difference between the recurrent neural network and general neural networks is that it can operate on the sequence. In spite of the fact that the gradient disappears and the gradient explodes still exist in the neural network, the method of gradient shearing or weight regularization is adopted to solve this problem, and choose the LSTM (long-short term memory networks) to locate the fault. The output uses the concept of membership degree of fuzzy theory to express the possible fault point with the probability from 0 to 1. Priority is given to the treatment of fault points with high probability. The concept of F-Measure is also introduced, and the positioning effect is measured by using location time, MSE and F-Measure. The experiment shows that both LSTM and BP neural network can locate the fault of optical transport network well, but the overall effect of LSTM is better. The localization time of LSTM is shorter than that of BP neural network, and the F1-score of LSTM can reach 0.961566888396156 after 45 iterations, which meets the accuracy and real-time requirements of fault location. Therefore, it has good application prospect and practical value to introduce neural network into the fault location field of optical transport network.展开更多
Neural stem cells(NSCs) and imprinted genes play an important role in brain development. On historical grounds, these two determinants have been largely studied independently of each other. Recent evidence suggests, h...Neural stem cells(NSCs) and imprinted genes play an important role in brain development. On historical grounds, these two determinants have been largely studied independently of each other. Recent evidence suggests, however, that NSCs can reset select genomic imprints to prevent precocious depletion of the stem cell reservoir. Moreover, imprinted genes like the transcriptional regulator Zac1 can fine tune neuronal vs astroglial differentiation of NSCs. Zac1 binds in a sequence-specific manner to pro-neuronal and imprinted genes to confer transcriptional regulation and furthermore coregulates members of the p53-family in NSCs. At the genome scale, Zac1 is a central hub of an imprinted gene network comprising genes with animportant role for NSC quiescence, proliferation and differentiation. Overall, transcriptional, epigenomic, and genomic mechanisms seem to coordinate the functional relationships of NSCs and imprinted genes from development to maturation, and possibly aging.展开更多
In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based...In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based on principal component analysis(PCA)and one-dimensional convolution neural network(1D-CNN)is proposed in this paper.Firstly,multiple state parameters corresponding to massive cycles of aeroengine are collected and brought into PCA for dimensionality reduction,and principal components are extracted for further time series prediction.Secondly,the 1D-CNN model is constructed to directly study the mapping between principal components and RUL.Multiple convolution and pooling operations are applied for deep feature extraction,and the end-to-end RUL prediction of aeroengine can be realized.Experimental results show that the most effective principal component from the multiple state parameters can be obtained by PCA,and the long time series of multiple state parameters can be directly mapped to RUL by 1D-CNN,so as to improve the efficiency and accuracy of RUL prediction.Compared with other traditional models,the proposed method also has lower prediction error and better robustness.展开更多
The hot deformation behavior of TI (18W-4Cr-1V) high-speed steel was investigated by means of continuous compression tests performed on Gleeble 1500 thermomechan- ical simulator in a wide range of tempemtures (950℃...The hot deformation behavior of TI (18W-4Cr-1V) high-speed steel was investigated by means of continuous compression tests performed on Gleeble 1500 thermomechan- ical simulator in a wide range of tempemtures (950℃-1150℃) with strain rotes of 0.001s-1-10s-1 and true strains of 0-0. 7. The flow stress at the above hot defor- mation conditions is predicted by using BP artificial neural network. The architecture of network includes there are three input parameters:strain rate,temperature T and true strain , and just one output parameter, the flow stress ,2 hidden layers are adopted, the first hidden layer includes 9 neurons and second 10 negroes. It has been verified that BP artificial neural network with 3-9-10-1 architecture can predict flow stress of high-speed steel during hot deformation very well. Compared with the prediction method of flow stress by using Zaped-Holloman parumeter and hyperbolic sine stress function, the prediction method by using BP artificial neurul network has higher efficiency and accuracy.展开更多
The geophysical model function (GMF) describes the relationship between backscattering and sea surface wind, so that wind vec- tors can be retrieved from backscattering measurement. The GMF plays an important role i...The geophysical model function (GMF) describes the relationship between backscattering and sea surface wind, so that wind vec- tors can be retrieved from backscattering measurement. The GMF plays an important role in ocean wind vector retrievals, its performance will directly influence the accuracy of the retrieved wind vector. Neural network (NN) approach is used to develop a unified GMF for C-band and Ku-band (NN-GMF). Empirical GMF CMOIM and QSCAT-1 are used to generate the simulated training data-set, and Gaussian noise at a signal noise ratio of 30 dB is added to the data-set to simulate the noise in the backscat- tering measurement. The NN-GMF employs radio frequency as an additional parameter, so it can be applied for both C-band and Ku-band. Analyses show that the %predicted by the NN-GMF is comparable with the σpredicted by CMOIM and QSCAT-1. Also the wind vectors retrieved from the NN-GMF and empirical GMF CMOIM and QSCAT-1 are comparable, indicating that the NN-GMF is as effective as the empirical GMF, and has the advantages of the universal form.展开更多
Background:The primary visual cortex(V1)is a key component of the visual system that builds some of the first levels of coherent visual representations from sparse visual inputs.While the study of its dynamics has bee...Background:The primary visual cortex(V1)is a key component of the visual system that builds some of the first levels of coherent visual representations from sparse visual inputs.While the study of its dynamics has been the focus of many computational models for the past years,there is still relatively few research works that put an emphasis on both synaptic plasticity in V1 and biorealism in the context of learning visual inputs.Here,we present a recurrent spiking neural network that is capable of spike timing dependent plasticity(STDP)and we demonstrate its capacity to discriminate spatio-temporal orientation patterns in noisy natural images.Methods:A two stage model was developed.First,natural images flux(be it videos/gratings/camera)were converted into spikes,using a difference of gaussians(DOG)approach.This transformation approximates the retina-lateral geniculate nucleus(LGN)organization.Secondly,a spiking neural network was build using PyNN simulator,mimicking cortical neurons dynamics and plasticity,as well as V1 topology.This network was then fed with spikes generated by the first model and its ability to build visual representations was assessed using control gratings inputs.Results:The neural network exhibited several interesting properties.After a short period of learning,it was capable of learning multiples orientations and reducing noise in such learned feature,compared to the inputs.These learned features were stable even after increasing the noise in inputs and were found to not only encoding the spatial properties of the input,but also its temporal aspects(i.e.,the time of each grating presentation Conclusions:Our work shows that topological structuring of the cortical neural networks,combined with simple plasticity rules,are sufficient to drive strong learning dynamics of natural images properties.This computational model fits many properties found in the literature and provides some theoritical explanations for the shape of tuning curve of certain layers of V1.Further investigations are now conducted to validate its properties against the neuronal responses of rodents,using identical visual stimuli.展开更多
In this paper, we construct two models for the searching task for a lost plane. Model 1 determines the searching area. We predict the trajectory of floats generated after the disintegration of the plane by using RBF n...In this paper, we construct two models for the searching task for a lost plane. Model 1 determines the searching area. We predict the trajectory of floats generated after the disintegration of the plane by using RBF neural network model, and then determine the searching area according to the trajectory. With the pass of time, the searching area will also be constantly moving along the trajectory. Model 2 develops a maritime search plan to achieve the purpose of completing the search in the shortest time. We optimize the searching time and transform the problem into the 0-1 knapsack problem. Solving this problem by improved genetic algorithm, we can get the shortest searching time and the best choice for the search power.展开更多
文摘In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the extraction of basic features.The images captured by wearable sensors contain advanced features,allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions.Poor lighting and limited sensor capabilities can impact data quality,making the recognition of human actions a challenging task.The unimodal-based HAR approaches are not suitable in a real-time environment.Therefore,an updated HAR model is developed using multiple types of data and an advanced deep-learning approach.Firstly,the required signals and sensor data are accumulated from the standard databases.From these signals,the wave features are retrieved.Then the extracted wave features and sensor data are given as the input to recognize the human activity.An Adaptive Hybrid Deep Attentive Network(AHDAN)is developed by incorporating a“1D Convolutional Neural Network(1DCNN)”with a“Gated Recurrent Unit(GRU)”for the human activity recognition process.Additionally,the Enhanced Archerfish Hunting Optimizer(EAHO)is suggested to fine-tune the network parameters for enhancing the recognition process.An experimental evaluation is performed on various deep learning networks and heuristic algorithms to confirm the effectiveness of the proposed HAR model.The EAHO-based HAR model outperforms traditional deep learning networks with an accuracy of 95.36,95.25 for recall,95.48 for specificity,and 95.47 for precision,respectively.The result proved that the developed model is effective in recognizing human action by taking less time.Additionally,it reduces the computation complexity and overfitting issue through using an optimization approach.
基金Project supported by the National Key Research and Development Program of China(Grant No.2019YFB2205102)the National Natural Science Foundation of China(Grant Nos.61974164,62074166,61804181,62004219,62004220,and 62104256).
文摘Memristor-based neuromorphic computing shows great potential for high-speed and high-throughput signal processing applications,such as electroencephalogram(EEG)signal processing.Nonetheless,the size of one-transistor one-resistor(1T1R)memristor arrays is limited by the non-ideality of the devices,which prevents the hardware implementation of large and complex networks.In this work,we propose the depthwise separable convolution and bidirectional gate recurrent unit(DSC-BiGRU)network,a lightweight and highly robust hybrid neural network based on 1T1R arrays that enables efficient processing of EEG signals in the temporal,frequency and spatial domains by hybridizing DSC and BiGRU blocks.The network size is reduced and the network robustness is improved while ensuring the network classification accuracy.In the simulation,the measured non-idealities of the 1T1R array are brought into the network through statistical analysis.Compared with traditional convolutional networks,the network parameters are reduced by 95%and the network classification accuracy is improved by 21%at a 95%array yield rate and 5%tolerable error.This work demonstrates that lightweight and highly robust networks based on memristor arrays hold great promise for applications that rely on low consumption and high efficiency.
基金Supported by the National Natural Science Foundation of China(No:69872039)
文摘By defining fuzzy valued simple functions and giving L1(μ) approximations of fuzzy valued integrably bounded functions by such simple functions, the paper analyses by L1(μ)-norm the approximation capability of four-layer feedforward regular fuzzy neural networks to the fuzzy valued integrably bounded function F : Rn → FcO(R). That is, if the transfer functionσ: R→R is non-polynomial and integrable function on each finite interval, F may be innorm approximated by fuzzy valued functions defined as to anydegree of accuracy. Finally some real examples demonstrate the conclusions.
基金support provided by the China National Key Research and Development Program of China under Grant 2019YFB2004300the National Natural Science Foundation of China under Grant 51975065 and 51805051.
文摘Integrated with sensors,processors,and radio frequency(RF)communication modules,intelligent bearing could achieve the autonomous perception and autonomous decision-making,guarantying the safety and reliability during their use.However,because of the resource limitations of the end device,processors in the intelligent bearing are unable to carry the computational load of deep learning models like convolutional neural network(CNN),which involves a great amount of multiplicative operations.To minimize the computation cost of the conventional CNN,based on the idea of AdderNet,a 1-D adder neural network with a wide first-layer kernel(WAddNN)suitable for bearing fault diagnosis is proposed in this paper.The proposed method uses the l1-norm distance between filters and input features as the output response,thus making the whole network almost free of multiplicative operations.The whole model takes the original signal as the input,uses a wide kernel in the first adder layer to extract features and suppress the high frequency noise,and then uses two layers of small kernels for nonlinear mapping.Through experimental comparison with CNN models of the same structure,WAddNN is able to achieve a similar accuracy as CNN models with significantly reduced computational cost.The proposed model provides a new fault diagnosis method for intelligent bearings with limited resources.
基金This project was supported by the National Natural Science Foundation of China (79970042).
文摘0-1 programming is a special case of the integer programming, which is commonly encountered in many optimization problems. Neural network and its general energy function are presented for 0-1 optimization problem. Then, the 0-1 optimization problems are solved by a neural network model with transient chaotic dynamics (TCNN). Numerical simulations of two typical 0-1 optimization problems show that TCNN can overcome HNN's main drawbacks that it suffers from the local minimum and can search for the global optimal solutions in to solveing 0-1 optimization problems.
文摘With the rapid growth of the Internet in recent years, the ability to analyze and identify its users has become increasingly important. Authorship analysis provides a means to glean information about the author of a document originating from the internet or elsewhere, including but not limited to the author’s gender. There are well-known linguistic differences between the writing of men and women, and these differences can be effectively used to predict the gender of a document’s author. Capitalizing on these linguistic nuances, this study uses a set of stylometric features and a set of word count features to facilitate automatic gender discrimination on emails from the popular Enron email dataset. These features are used in conjunction with the Modified Balanced Winnow Neural Network proposed by Carvalho and Cohen, an improvement on the original Balanced Winnow created by Littlestone. Experiments with the Modified Balanced Winnow show that it is effectively able to discriminate gender using both stylometric and word count features, with the word count features providing superior results.
文摘Due to the increasing variety of information and services carried by optical networks, the survivability of network becomes an important problem in current research. The fault location of OTN is of great significance for studying the survivability of optical networks. Firstly, a three-channel network model is established and analyzing common alarm data, the fault monitoring points and common fault points are carried out. The artificial neural network is introduced into the fault location field of OTN and it is used to judge whether the possible fault point exists or not. But one of the obvious limitations of general neural networks is that they receive a fixedsize vector as input and produce a fixed-size vector as the output. Not only that, these models is even fixed for mapping operations (for example, the number of layers in the model). The difference between the recurrent neural network and general neural networks is that it can operate on the sequence. In spite of the fact that the gradient disappears and the gradient explodes still exist in the neural network, the method of gradient shearing or weight regularization is adopted to solve this problem, and choose the LSTM (long-short term memory networks) to locate the fault. The output uses the concept of membership degree of fuzzy theory to express the possible fault point with the probability from 0 to 1. Priority is given to the treatment of fault points with high probability. The concept of F-Measure is also introduced, and the positioning effect is measured by using location time, MSE and F-Measure. The experiment shows that both LSTM and BP neural network can locate the fault of optical transport network well, but the overall effect of LSTM is better. The localization time of LSTM is shorter than that of BP neural network, and the F1-score of LSTM can reach 0.961566888396156 after 45 iterations, which meets the accuracy and real-time requirements of fault location. Therefore, it has good application prospect and practical value to introduce neural network into the fault location field of optical transport network.
文摘Neural stem cells(NSCs) and imprinted genes play an important role in brain development. On historical grounds, these two determinants have been largely studied independently of each other. Recent evidence suggests, however, that NSCs can reset select genomic imprints to prevent precocious depletion of the stem cell reservoir. Moreover, imprinted genes like the transcriptional regulator Zac1 can fine tune neuronal vs astroglial differentiation of NSCs. Zac1 binds in a sequence-specific manner to pro-neuronal and imprinted genes to confer transcriptional regulation and furthermore coregulates members of the p53-family in NSCs. At the genome scale, Zac1 is a central hub of an imprinted gene network comprising genes with animportant role for NSC quiescence, proliferation and differentiation. Overall, transcriptional, epigenomic, and genomic mechanisms seem to coordinate the functional relationships of NSCs and imprinted genes from development to maturation, and possibly aging.
基金supported by Jiangsu Social Science Foundation(No.20GLD008)Science,Technology Projects of Jiangsu Provincial Department of Communications(No.2020Y14)Joint Fund for Civil Aviation Research(No.U1933202)。
文摘In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based on principal component analysis(PCA)and one-dimensional convolution neural network(1D-CNN)is proposed in this paper.Firstly,multiple state parameters corresponding to massive cycles of aeroengine are collected and brought into PCA for dimensionality reduction,and principal components are extracted for further time series prediction.Secondly,the 1D-CNN model is constructed to directly study the mapping between principal components and RUL.Multiple convolution and pooling operations are applied for deep feature extraction,and the end-to-end RUL prediction of aeroengine can be realized.Experimental results show that the most effective principal component from the multiple state parameters can be obtained by PCA,and the long time series of multiple state parameters can be directly mapped to RUL by 1D-CNN,so as to improve the efficiency and accuracy of RUL prediction.Compared with other traditional models,the proposed method also has lower prediction error and better robustness.
文摘The hot deformation behavior of TI (18W-4Cr-1V) high-speed steel was investigated by means of continuous compression tests performed on Gleeble 1500 thermomechan- ical simulator in a wide range of tempemtures (950℃-1150℃) with strain rotes of 0.001s-1-10s-1 and true strains of 0-0. 7. The flow stress at the above hot defor- mation conditions is predicted by using BP artificial neural network. The architecture of network includes there are three input parameters:strain rate,temperature T and true strain , and just one output parameter, the flow stress ,2 hidden layers are adopted, the first hidden layer includes 9 neurons and second 10 negroes. It has been verified that BP artificial neural network with 3-9-10-1 architecture can predict flow stress of high-speed steel during hot deformation very well. Compared with the prediction method of flow stress by using Zaped-Holloman parumeter and hyperbolic sine stress function, the prediction method by using BP artificial neurul network has higher efficiency and accuracy.
基金supported by the National Basic Research and Development Program("973" Program),under contract No.2009CB421202the National Natural Science Foundation of China under contract No. 40706061the National High Technology Development Program ("863"Program),under contract Nos 2007AA12Z137 and 2008AA09Z104
文摘The geophysical model function (GMF) describes the relationship between backscattering and sea surface wind, so that wind vec- tors can be retrieved from backscattering measurement. The GMF plays an important role in ocean wind vector retrievals, its performance will directly influence the accuracy of the retrieved wind vector. Neural network (NN) approach is used to develop a unified GMF for C-band and Ku-band (NN-GMF). Empirical GMF CMOIM and QSCAT-1 are used to generate the simulated training data-set, and Gaussian noise at a signal noise ratio of 30 dB is added to the data-set to simulate the noise in the backscat- tering measurement. The NN-GMF employs radio frequency as an additional parameter, so it can be applied for both C-band and Ku-band. Analyses show that the %predicted by the NN-GMF is comparable with the σpredicted by CMOIM and QSCAT-1. Also the wind vectors retrieved from the NN-GMF and empirical GMF CMOIM and QSCAT-1 are comparable, indicating that the NN-GMF is as effective as the empirical GMF, and has the advantages of the universal form.
文摘Background:The primary visual cortex(V1)is a key component of the visual system that builds some of the first levels of coherent visual representations from sparse visual inputs.While the study of its dynamics has been the focus of many computational models for the past years,there is still relatively few research works that put an emphasis on both synaptic plasticity in V1 and biorealism in the context of learning visual inputs.Here,we present a recurrent spiking neural network that is capable of spike timing dependent plasticity(STDP)and we demonstrate its capacity to discriminate spatio-temporal orientation patterns in noisy natural images.Methods:A two stage model was developed.First,natural images flux(be it videos/gratings/camera)were converted into spikes,using a difference of gaussians(DOG)approach.This transformation approximates the retina-lateral geniculate nucleus(LGN)organization.Secondly,a spiking neural network was build using PyNN simulator,mimicking cortical neurons dynamics and plasticity,as well as V1 topology.This network was then fed with spikes generated by the first model and its ability to build visual representations was assessed using control gratings inputs.Results:The neural network exhibited several interesting properties.After a short period of learning,it was capable of learning multiples orientations and reducing noise in such learned feature,compared to the inputs.These learned features were stable even after increasing the noise in inputs and were found to not only encoding the spatial properties of the input,but also its temporal aspects(i.e.,the time of each grating presentation Conclusions:Our work shows that topological structuring of the cortical neural networks,combined with simple plasticity rules,are sufficient to drive strong learning dynamics of natural images properties.This computational model fits many properties found in the literature and provides some theoritical explanations for the shape of tuning curve of certain layers of V1.Further investigations are now conducted to validate its properties against the neuronal responses of rodents,using identical visual stimuli.
文摘In this paper, we construct two models for the searching task for a lost plane. Model 1 determines the searching area. We predict the trajectory of floats generated after the disintegration of the plane by using RBF neural network model, and then determine the searching area according to the trajectory. With the pass of time, the searching area will also be constantly moving along the trajectory. Model 2 develops a maritime search plan to achieve the purpose of completing the search in the shortest time. We optimize the searching time and transform the problem into the 0-1 knapsack problem. Solving this problem by improved genetic algorithm, we can get the shortest searching time and the best choice for the search power.