An engineering system approach of 2-D cylindrical model of transient mass balance calculations of ozone and other concerned chemicals along with fourteen photolysis, ozone-generating and ozone-depleting chemical react...An engineering system approach of 2-D cylindrical model of transient mass balance calculations of ozone and other concerned chemicals along with fourteen photolysis, ozone-generating and ozone-depleting chemical reaction equations was developed, validated, and used for studying the ozone concentrations, distribution and peak of the layer, ozone depletion and total ozone abundance in the stratosphere. The calculated ozone concentrations and profile at both the Equator and a 60˚N location were found to follow closely with the measured data. The calculated average ozone concentration was within 1% of the measured average, and the deviation of ozone profiles was within 14%. The monthly evolution of stratospheric ozone concentrations and distribution above the Equator was studied with results discussed in details. The influences of slow air movement in both altitudinal and radial directions on ozone concentrations and profile in the stratosphere were explored and discussed. Parametric studies of the influences of gas diffusivities of ozone D<sub>O3</sub> and active atomic oxygen D<sub>O</sub> on ozone concentrations and distributions were also studied and delineated. Having both influences through physical diffusion and chemical reactions, the diffusivity (and diffusion) of atomic oxygen D<sub>O</sub> was found to be more sensitive and important than that of ozone D<sub>O3</sub> on ozone concentrations and distribution. The 2-D ozone model present in this paper for stratospheric ozone and its layer and depletion is shown to be robust, convenient, efficient, and executable for analyzing the complex ozone phenomena in the stratosphere. .展开更多
A physically-based numerical three-dimensional earthen dam piping failure model is developed for homogeneous and zoned soil dams.This model is an erosion model,coupled with force/moment equilibrium analyses.Orifice fl...A physically-based numerical three-dimensional earthen dam piping failure model is developed for homogeneous and zoned soil dams.This model is an erosion model,coupled with force/moment equilibrium analyses.Orifice flow and two-dimensional(2D)shallow water equations(SWE)are solved to simulate dam break flows at different breaching stages.Erosion rates of different soils with different construction compaction efforts are calculated using corresponding erosion formulae.The dam's real shape,soil properties,and surrounding area are programmed.Large outer 2D-SWE grids are used to control upstream and downstream hydraulic conditions and control the boundary conditions of orifice flow,and inner 2D-SWE flow is used to scour soil and perform force/moment equilibrium analyses.This model is validated using the European Commission IMPACT(Investigation of Extreme Flood Processes and Uncertainty)Test#5 in Norway,Teton Dam failure in Idaho,USA,and Quail Creek Dike failure in Utah,USA.All calculated peak outflows are within 10%errors of observed values.Simulation results show that,for a V-shaped dam like Teton Dam,a piping breach location at the abutment tends to result in a smaller peak breach outflow than the piping breach location at the dam's center;and if Teton Dam had broken from its center for internal erosion,a peak outflow of 117851 m'/s,which is 81%larger than the peak outflow of 65120 m3/s released from its right abutment,would have been released from Teton Dam.A lower piping inlet elevation tends to cause a faster/earlier piping breach than a higher piping inlet elevation.展开更多
Methane gas hydrate related bottom-simulating reflectors(BSRs)are imaged based on the in-line and cross-line multi-channel seismic(MCS)data from the Andaman Forearc Basin.The depth of the BSR depends on pressure and t...Methane gas hydrate related bottom-simulating reflectors(BSRs)are imaged based on the in-line and cross-line multi-channel seismic(MCS)data from the Andaman Forearc Basin.The depth of the BSR depends on pressure and temperature and pore water salinity.With these assumptions,the BSR depth can be used to estimate the geothermal gradient(GTG)based on the availability of in-situ temperature measurements.This calculation is done assuming a 1D conductive model based on available in-situ temperature measurement at site NGHP-01-17 in the study area.However,in the presence of seafloor topography,the conductive temperature field in the subsurface is affected by lateral refraction of heat,which focuses heat in topographic lows and away from topographic highs.The 1D estimate of GTG in the Andaman Forearc Basin has been validated by drilling results from the NGHP-01 expedition.2D analytic modeling to estimate the effects of topography is performed earlier along selected seismic profiles in the study area.The study extended to estimate the effect of topography in 3D using a numerical model.The corrected GTG data allow us to determine GTG values free of topographic effect.The difference between the estimated GTG and values corrected for the 3D topographic effect varies up to~5℃/km.These conclude that the topographic correction is relatively small compared to other uncertainties in the 1D model and that apparent GTG determined with the 1D model captures the major features,although the correction is needed prior to interpreting subtle features of the derived GTG maps.展开更多
2,4(5)-Dinitroimidazole(2,4(5)-DNI)is an important organic intermediate,and itself can also be used for energetic material.In this work,the solubility of 2,4(5)-DNI in(methanol+water,acetonitrile+water,acetone+water)b...2,4(5)-Dinitroimidazole(2,4(5)-DNI)is an important organic intermediate,and itself can also be used for energetic material.In this work,the solubility of 2,4(5)-DNI in(methanol+water,acetonitrile+water,acetone+water)binary solvents were measured by using a dynamic test method from 278.15 K to 323.15 K under 101.1 k Pa.The Jouyban–Acree model,van't Hoff–Jouyban–Acree model,Apelblat–Jouyb an–Acree model,Ma model,and Sun model were used to correlate the experimental data.The values of relative average deviation(RAD)and root-mean-square deviation(RMSD)were very small,indicating that the error between the experimental value and the correlated value was very small.The thermodynamic parameters such as dissolution enthalpy,dissolution entropy and Gibbs energy were calculated based on solubility data.High-purity of 2,4(5)-DNI was efficiently obtained by using cooling and dilution crystallization method.展开更多
In order to reduce the occurrence of traffic accidents and assist drivers to avoid dangerous driving. This paper presents a smart in-vehicle safety system that utilises the Yolov5 algorithm. Yolov5 algorithm is used t...In order to reduce the occurrence of traffic accidents and assist drivers to avoid dangerous driving. This paper presents a smart in-vehicle safety system that utilises the Yolov5 algorithm. Yolov5 algorithm is used to anticipate driver fatigue and distraction behaviours, and remind drivers to pay attention to safe driving in time. The system continuously splits the frames and analyses the frame content through the video feedback from the front camera, compared to the traditional machine learning, Yolov5’s mosaic data is enhanced, resulting in a batch size enhancement of 92.3%, and it also uses the Drop Block mechanism to prevent overfitting. The hardware of this system uses STM32 microcontroller and uses system DMA interrupt control and buzzer alarm device to warn about dangerous driving behaviour.展开更多
This work uses 2D TEM (Transient Electromagnetic) modeling for a hydrogeological study in the Paraná sedimentary basin. The study area is located at the northern region of the state of S?o Paulo, Brazil, where gr...This work uses 2D TEM (Transient Electromagnetic) modeling for a hydrogeological study in the Paraná sedimentary basin. The study area is located at the northern region of the state of S?o Paulo, Brazil, where groundwater is exploited from two aquifer systems: one sedimentary, shallow, and the other crystalline, deep. The interest in applying the TEM method in this area owes to the high exploitation rates of groundwater from the crystalline aquifer system for irrigation, which is triggering considerable seismic activity locally. This aquifer system is composed of fractured basalt within the Serra Geral Formation and is about 120 m deep. Eighty-six TEM soundings were acquired at this location, but in nine cases the data did not fit the modelled curve for 1D geoelectrical models due to the geological complexity of the area. This paper shows 2D geoelectrical modeling results based on the FDTD (Finite Differences in Time Domain) method to explain the lateral resistivity variation within the geological setting. A 2D model was generated for each sounding and compared with 1D inversion models as well as with direct information from wells. The results show some vertical variations of about 10 to 30 meters on the upper interface of the basalt layer from Serra Geral Formation. They are located at approximately 60 meters from the center of the soundings. The existence of these 2D structures in the subsurface can be related to the drainage system in the study area. The presence of these structures may indicate a connection between the shallow and deep aquifer systems, acting like a conduit that may contribute to the seismic activity reported.展开更多
文摘An engineering system approach of 2-D cylindrical model of transient mass balance calculations of ozone and other concerned chemicals along with fourteen photolysis, ozone-generating and ozone-depleting chemical reaction equations was developed, validated, and used for studying the ozone concentrations, distribution and peak of the layer, ozone depletion and total ozone abundance in the stratosphere. The calculated ozone concentrations and profile at both the Equator and a 60˚N location were found to follow closely with the measured data. The calculated average ozone concentration was within 1% of the measured average, and the deviation of ozone profiles was within 14%. The monthly evolution of stratospheric ozone concentrations and distribution above the Equator was studied with results discussed in details. The influences of slow air movement in both altitudinal and radial directions on ozone concentrations and profile in the stratosphere were explored and discussed. Parametric studies of the influences of gas diffusivities of ozone D<sub>O3</sub> and active atomic oxygen D<sub>O</sub> on ozone concentrations and distributions were also studied and delineated. Having both influences through physical diffusion and chemical reactions, the diffusivity (and diffusion) of atomic oxygen D<sub>O</sub> was found to be more sensitive and important than that of ozone D<sub>O3</sub> on ozone concentrations and distribution. The 2-D ozone model present in this paper for stratospheric ozone and its layer and depletion is shown to be robust, convenient, efficient, and executable for analyzing the complex ozone phenomena in the stratosphere. .
文摘A physically-based numerical three-dimensional earthen dam piping failure model is developed for homogeneous and zoned soil dams.This model is an erosion model,coupled with force/moment equilibrium analyses.Orifice flow and two-dimensional(2D)shallow water equations(SWE)are solved to simulate dam break flows at different breaching stages.Erosion rates of different soils with different construction compaction efforts are calculated using corresponding erosion formulae.The dam's real shape,soil properties,and surrounding area are programmed.Large outer 2D-SWE grids are used to control upstream and downstream hydraulic conditions and control the boundary conditions of orifice flow,and inner 2D-SWE flow is used to scour soil and perform force/moment equilibrium analyses.This model is validated using the European Commission IMPACT(Investigation of Extreme Flood Processes and Uncertainty)Test#5 in Norway,Teton Dam failure in Idaho,USA,and Quail Creek Dike failure in Utah,USA.All calculated peak outflows are within 10%errors of observed values.Simulation results show that,for a V-shaped dam like Teton Dam,a piping breach location at the abutment tends to result in a smaller peak breach outflow than the piping breach location at the dam's center;and if Teton Dam had broken from its center for internal erosion,a peak outflow of 117851 m'/s,which is 81%larger than the peak outflow of 65120 m3/s released from its right abutment,would have been released from Teton Dam.A lower piping inlet elevation tends to cause a faster/earlier piping breach than a higher piping inlet elevation.
文摘Methane gas hydrate related bottom-simulating reflectors(BSRs)are imaged based on the in-line and cross-line multi-channel seismic(MCS)data from the Andaman Forearc Basin.The depth of the BSR depends on pressure and temperature and pore water salinity.With these assumptions,the BSR depth can be used to estimate the geothermal gradient(GTG)based on the availability of in-situ temperature measurements.This calculation is done assuming a 1D conductive model based on available in-situ temperature measurement at site NGHP-01-17 in the study area.However,in the presence of seafloor topography,the conductive temperature field in the subsurface is affected by lateral refraction of heat,which focuses heat in topographic lows and away from topographic highs.The 1D estimate of GTG in the Andaman Forearc Basin has been validated by drilling results from the NGHP-01 expedition.2D analytic modeling to estimate the effects of topography is performed earlier along selected seismic profiles in the study area.The study extended to estimate the effect of topography in 3D using a numerical model.The corrected GTG data allow us to determine GTG values free of topographic effect.The difference between the estimated GTG and values corrected for the 3D topographic effect varies up to~5℃/km.These conclude that the topographic correction is relatively small compared to other uncertainties in the 1D model and that apparent GTG determined with the 1D model captures the major features,although the correction is needed prior to interpreting subtle features of the derived GTG maps.
文摘2,4(5)-Dinitroimidazole(2,4(5)-DNI)is an important organic intermediate,and itself can also be used for energetic material.In this work,the solubility of 2,4(5)-DNI in(methanol+water,acetonitrile+water,acetone+water)binary solvents were measured by using a dynamic test method from 278.15 K to 323.15 K under 101.1 k Pa.The Jouyban–Acree model,van't Hoff–Jouyban–Acree model,Apelblat–Jouyb an–Acree model,Ma model,and Sun model were used to correlate the experimental data.The values of relative average deviation(RAD)and root-mean-square deviation(RMSD)were very small,indicating that the error between the experimental value and the correlated value was very small.The thermodynamic parameters such as dissolution enthalpy,dissolution entropy and Gibbs energy were calculated based on solubility data.High-purity of 2,4(5)-DNI was efficiently obtained by using cooling and dilution crystallization method.
文摘In order to reduce the occurrence of traffic accidents and assist drivers to avoid dangerous driving. This paper presents a smart in-vehicle safety system that utilises the Yolov5 algorithm. Yolov5 algorithm is used to anticipate driver fatigue and distraction behaviours, and remind drivers to pay attention to safe driving in time. The system continuously splits the frames and analyses the frame content through the video feedback from the front camera, compared to the traditional machine learning, Yolov5’s mosaic data is enhanced, resulting in a batch size enhancement of 92.3%, and it also uses the Drop Block mechanism to prevent overfitting. The hardware of this system uses STM32 microcontroller and uses system DMA interrupt control and buzzer alarm device to warn about dangerous driving behaviour.
文摘This work uses 2D TEM (Transient Electromagnetic) modeling for a hydrogeological study in the Paraná sedimentary basin. The study area is located at the northern region of the state of S?o Paulo, Brazil, where groundwater is exploited from two aquifer systems: one sedimentary, shallow, and the other crystalline, deep. The interest in applying the TEM method in this area owes to the high exploitation rates of groundwater from the crystalline aquifer system for irrigation, which is triggering considerable seismic activity locally. This aquifer system is composed of fractured basalt within the Serra Geral Formation and is about 120 m deep. Eighty-six TEM soundings were acquired at this location, but in nine cases the data did not fit the modelled curve for 1D geoelectrical models due to the geological complexity of the area. This paper shows 2D geoelectrical modeling results based on the FDTD (Finite Differences in Time Domain) method to explain the lateral resistivity variation within the geological setting. A 2D model was generated for each sounding and compared with 1D inversion models as well as with direct information from wells. The results show some vertical variations of about 10 to 30 meters on the upper interface of the basalt layer from Serra Geral Formation. They are located at approximately 60 meters from the center of the soundings. The existence of these 2D structures in the subsurface can be related to the drainage system in the study area. The presence of these structures may indicate a connection between the shallow and deep aquifer systems, acting like a conduit that may contribute to the seismic activity reported.