The ultrafast dynamics through conical intersections in 2,6-dimethylpyridine has been studied by femtosecond time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. Upon absorption of 266 nm ...The ultrafast dynamics through conical intersections in 2,6-dimethylpyridine has been studied by femtosecond time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. Upon absorption of 266 nm pump laser, 2,6-dimethylpyridine is excited to the S2 state with a ππ character from So state. The time evolution of the parent ion signals consists of two exponential decays. One is a fast component on a timescale of 635 fs and the other is a slow component with a timescale of 4.37 ps. Time-dependent photo- electron angular distributions and energy-resolved photoelectron spectroscopy are extracted from time-resolved photoelectron imaging and provide the evolutive information of S2 state. In brief, the ultrafast component is a population transfer from S2 to S1 through the S2/S1 conical intersections, the slow component is attributed to simultaneous IC from the S2 state and the higher vibrational levels of S1 state to So state, which involves the coupling of S2/S0 and S1/So conical intersections. Additionally, the observed ultrafast S2--+S1 transition occurs only with an 18% branching ratio.展开更多
以自制2-氨基-4-甲基-5-(1H-1,2,4-三唑-1-基)-噻吩-3-甲酸乙酯为起始原料制得膦亚胺,膦亚胺与苯基异氰酸酯作用得到碳二亚胺,在碳酸钾的催化下,碳二亚胺与酚反应得到4个新型的2-芳氧基-3-苯基-5-甲基-6-(1H-1,2,4-三唑-1-基)噻吩并...以自制2-氨基-4-甲基-5-(1H-1,2,4-三唑-1-基)-噻吩-3-甲酸乙酯为起始原料制得膦亚胺,膦亚胺与苯基异氰酸酯作用得到碳二亚胺,在碳酸钾的催化下,碳二亚胺与酚反应得到4个新型的2-芳氧基-3-苯基-5-甲基-6-(1H-1,2,4-三唑-1-基)噻吩并[2,3-d]嘧啶-4(3H)-酮衍生物(3a-3d),收率为70%~86%,通过1 H NMR、MS和元素分析等方法对合成化合物进行了结构表征,并初步测定了合成化合物的生物活性。结果表明,目标化合物对常见农作物部分菌体均表现出一定的抑菌活性,其中以2-萘氧基-3-苯基-5-甲基-6-(1H-1,2,4-三唑-1-基)噻吩并[2,3-d]嘧啶-4(3H)-酮活性最好,在浓度为5×10-5g/L时,对苹果轮纹菌的抑制率达到80%。展开更多
On the base of benzimidazole and benzofuran containing heterocyclic system, several derivatives with expected biological activity were synthesized. 2,3-diaminodibenzofuran was the primary substance. Adding various cyc...On the base of benzimidazole and benzofuran containing heterocyclic system, several derivatives with expected biological activity were synthesized. 2,3-diaminodibenzofuran was the primary substance. Adding various cyclic agents, 2-phenil was got, 2-(o-chlorophenil), 2-(o-oxyphenil), 2-chlorometyl- and 2-hydroximethyl-3H-benzo[b[furo(3,2-f] benzimidazoles. The aforementioned substances were characterized by IR and NMR spectroscopy.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.10704083),the Innovation Foundation of Chinese Academyof Sciences (No.KJCX1-YW-N30), and the Public Science and Technology Program of Shenzhen (No.SY200806260026A).
文摘The ultrafast dynamics through conical intersections in 2,6-dimethylpyridine has been studied by femtosecond time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. Upon absorption of 266 nm pump laser, 2,6-dimethylpyridine is excited to the S2 state with a ππ character from So state. The time evolution of the parent ion signals consists of two exponential decays. One is a fast component on a timescale of 635 fs and the other is a slow component with a timescale of 4.37 ps. Time-dependent photo- electron angular distributions and energy-resolved photoelectron spectroscopy are extracted from time-resolved photoelectron imaging and provide the evolutive information of S2 state. In brief, the ultrafast component is a population transfer from S2 to S1 through the S2/S1 conical intersections, the slow component is attributed to simultaneous IC from the S2 state and the higher vibrational levels of S1 state to So state, which involves the coupling of S2/S0 and S1/So conical intersections. Additionally, the observed ultrafast S2--+S1 transition occurs only with an 18% branching ratio.
文摘以自制2-氨基-4-甲基-5-(1H-1,2,4-三唑-1-基)-噻吩-3-甲酸乙酯为起始原料制得膦亚胺,膦亚胺与苯基异氰酸酯作用得到碳二亚胺,在碳酸钾的催化下,碳二亚胺与酚反应得到4个新型的2-芳氧基-3-苯基-5-甲基-6-(1H-1,2,4-三唑-1-基)噻吩并[2,3-d]嘧啶-4(3H)-酮衍生物(3a-3d),收率为70%~86%,通过1 H NMR、MS和元素分析等方法对合成化合物进行了结构表征,并初步测定了合成化合物的生物活性。结果表明,目标化合物对常见农作物部分菌体均表现出一定的抑菌活性,其中以2-萘氧基-3-苯基-5-甲基-6-(1H-1,2,4-三唑-1-基)噻吩并[2,3-d]嘧啶-4(3H)-酮活性最好,在浓度为5×10-5g/L时,对苹果轮纹菌的抑制率达到80%。
文摘On the base of benzimidazole and benzofuran containing heterocyclic system, several derivatives with expected biological activity were synthesized. 2,3-diaminodibenzofuran was the primary substance. Adding various cyclic agents, 2-phenil was got, 2-(o-chlorophenil), 2-(o-oxyphenil), 2-chlorometyl- and 2-hydroximethyl-3H-benzo[b[furo(3,2-f] benzimidazoles. The aforementioned substances were characterized by IR and NMR spectroscopy.