A novel 1-3-2 piezoelectric composite has been developed,which consists of piezoelectric ceramic plate and 1-3 piezoelectric composite.The composite was fabricated by dicing PZT ceramic along mutual perpendicular two ...A novel 1-3-2 piezoelectric composite has been developed,which consists of piezoelectric ceramic plate and 1-3 piezoelectric composite.The composite was fabricated by dicing PZT ceramic along mutual perpendicular two directions and then filling epoxy into grooves.The piezoelectric and electromechanical properties of the novel composite were determined. The results show a coefficient d_ (33) of 405pC/N,a vibration displacement of 113.5pm,an acoustic impendence of 13.3 Mraly, a bandwidth of 12kHz and a thickness electromechanical coupling coefficient of 0.56.展开更多
The development of a highly efficient and durable electrocatalyst for nitrate reduction reaction(NO_(3)RR)wastewater valorization to ammonia(NH_(3))is a promising strategy.However,it is challenging to design scalable ...The development of a highly efficient and durable electrocatalyst for nitrate reduction reaction(NO_(3)RR)wastewater valorization to ammonia(NH_(3))is a promising strategy.However,it is challenging to design scalable low-cost electrocatalysts with high activity,high selectivity,and long-term stability by a facile and simple method.Herein,we construct this scalable Cu-based nanoarray with muti-oxidation states grown directly on nickel foam(NF)substrate(Cu_(2+1)O@Cu/NF)using a facile molten salt method combined in-situ electrochemical reduction.The as-prepared Cu_(2+1)O@Cu/NF nanoarrays reveal a high NH_(3) yield of 20.14 mg h^(−1) cm^(−2) at−0.95 V vs.a reversible hydrogen electrode(vs.RHE),Faradaic efficiency of 99.38%at−0.55 V vs.RHE in the neutral potassium phosphate(PBS)buffer solution with 50 mM NaNO_(3),which is ascribed to its electron redistribution with abundant oxygen vacancies and favorable charge/mass transfer.展开更多
C_(f)/Ta_(x)Hf_(1−x)C–SiC composites are ideal thermal structural materials for service under extreme conditions of hypersonic vehicles.However,how to synthesize TaxHf1-xC powders and efficiently fabricate C_(f)/Ta_(...C_(f)/Ta_(x)Hf_(1−x)C–SiC composites are ideal thermal structural materials for service under extreme conditions of hypersonic vehicles.However,how to synthesize TaxHf1-xC powders and efficiently fabricate C_(f)/Ta_(x)Hf_(1−x)C–SiC composites still faces some challenges.Furthermore,mechanical properties and thermophysical properties of Ta_(x)Hf_(1−x)C vary with the composition,but not monotonically.In-depth analysis of mechanical behaviors of the C_(f)/Ta_(x)Hf_(1−x)C–SiC composites is extremely important for their development and applications.In this study,the Ta_(x)Hf_(1−x)C powders(x=0.2,0.5,0.8)were successfully synthesized via solid solution of TaC and HfC at a relatively low temperature of 1800℃,with a small amount of Si as an additive.Subsequently,the efficient fabrication of 2D-C_(f)/Ta_(x)Hf_(1−x)C–SiC composites was achieved by slurry impregnation and lamination(SIL)combined with precursor infiltration and pyrolysis(PIP).In addition,the mechanical behavior of the composites was investigated systematically.It is demonstrated that the composites present remarkable non-brittle fractures,including a large number of fiber pull out and interphase debonding.Also,the fracture failure involves a complex process of microcrack generation and propagation,matrix cracking,and layer fracture.Moreover,the interfacial bonding between the fibers and the matrix is enhanced as the Ta∶Hf ratio decreases from 4∶1 to 1∶4.As a result,C_(f)/Ta_(0.2)Hf_(0.8)C–SiC composites exhibit exceptional flexural strength of 437±19 MPa,improved by 46%compared with C_(f)/Ta_(0.8)Hf_(0.2)C–SiC(299±19 MPa).This study provides a new perception of design and fabrication of ultra-high-temperature ceramic(UHTC)matrix composites with high performance.展开更多
基金supported by the Beijing Natural Science Foundation of China(No.KZ200410772016)Academic Innovative Team Program of University in Beijing.
文摘A novel 1-3-2 piezoelectric composite has been developed,which consists of piezoelectric ceramic plate and 1-3 piezoelectric composite.The composite was fabricated by dicing PZT ceramic along mutual perpendicular two directions and then filling epoxy into grooves.The piezoelectric and electromechanical properties of the novel composite were determined. The results show a coefficient d_ (33) of 405pC/N,a vibration displacement of 113.5pm,an acoustic impendence of 13.3 Mraly, a bandwidth of 12kHz and a thickness electromechanical coupling coefficient of 0.56.
基金the National Natural Science Foundation of China(Nos.21975106 and 21403232)MOE&SAFEA,111 Project(B13025)for financial support.
文摘The development of a highly efficient and durable electrocatalyst for nitrate reduction reaction(NO_(3)RR)wastewater valorization to ammonia(NH_(3))is a promising strategy.However,it is challenging to design scalable low-cost electrocatalysts with high activity,high selectivity,and long-term stability by a facile and simple method.Herein,we construct this scalable Cu-based nanoarray with muti-oxidation states grown directly on nickel foam(NF)substrate(Cu_(2+1)O@Cu/NF)using a facile molten salt method combined in-situ electrochemical reduction.The as-prepared Cu_(2+1)O@Cu/NF nanoarrays reveal a high NH_(3) yield of 20.14 mg h^(−1) cm^(−2) at−0.95 V vs.a reversible hydrogen electrode(vs.RHE),Faradaic efficiency of 99.38%at−0.55 V vs.RHE in the neutral potassium phosphate(PBS)buffer solution with 50 mM NaNO_(3),which is ascribed to its electron redistribution with abundant oxygen vacancies and favorable charge/mass transfer.
基金support from the National Key R&D Program of China(No.2022YFB3707700)Program of Shanghai Academic/Technology Research Leader(No.23XD1424300)the National Natural Science Foundation of China(No.52332003)are greatly acknowledged.
文摘C_(f)/Ta_(x)Hf_(1−x)C–SiC composites are ideal thermal structural materials for service under extreme conditions of hypersonic vehicles.However,how to synthesize TaxHf1-xC powders and efficiently fabricate C_(f)/Ta_(x)Hf_(1−x)C–SiC composites still faces some challenges.Furthermore,mechanical properties and thermophysical properties of Ta_(x)Hf_(1−x)C vary with the composition,but not monotonically.In-depth analysis of mechanical behaviors of the C_(f)/Ta_(x)Hf_(1−x)C–SiC composites is extremely important for their development and applications.In this study,the Ta_(x)Hf_(1−x)C powders(x=0.2,0.5,0.8)were successfully synthesized via solid solution of TaC and HfC at a relatively low temperature of 1800℃,with a small amount of Si as an additive.Subsequently,the efficient fabrication of 2D-C_(f)/Ta_(x)Hf_(1−x)C–SiC composites was achieved by slurry impregnation and lamination(SIL)combined with precursor infiltration and pyrolysis(PIP).In addition,the mechanical behavior of the composites was investigated systematically.It is demonstrated that the composites present remarkable non-brittle fractures,including a large number of fiber pull out and interphase debonding.Also,the fracture failure involves a complex process of microcrack generation and propagation,matrix cracking,and layer fracture.Moreover,the interfacial bonding between the fibers and the matrix is enhanced as the Ta∶Hf ratio decreases from 4∶1 to 1∶4.As a result,C_(f)/Ta_(0.2)Hf_(0.8)C–SiC composites exhibit exceptional flexural strength of 437±19 MPa,improved by 46%compared with C_(f)/Ta_(0.8)Hf_(0.2)C–SiC(299±19 MPa).This study provides a new perception of design and fabrication of ultra-high-temperature ceramic(UHTC)matrix composites with high performance.