Nuclear fuel performance modeling and simulation are critical tasks for nuclear fuel design optimization and safety analysis under normal and transient conditions.Fuel performance is a complicated phenomenon that invo...Nuclear fuel performance modeling and simulation are critical tasks for nuclear fuel design optimization and safety analysis under normal and transient conditions.Fuel performance is a complicated phenomenon that involves thermal,mechanical,and irradiation mechanisms and requires special multiphysics modules.In this study,a fuel performance model was developed using the COMSOL Multiphysics platform.The modeling was performed for a 2D axis-symmetric geometry of a UO2fuel pellet in the E110 clad for VVER-1200 fuel.The modeling considers all relevant phenomena,including heat generation and conduction,gap heat transfer,elastic strain,mechanical contact,thermal expansion,grain growth,densification,fission gas generation and release,fission product swelling,gap/plenum pressure,and cladding thermal and irradiation creep.The model was validated using a code-to-code evaluation of the fuel pellet centerline and surface temperatures in the case of constant power,in addition to validation of fission gas release(FGR)predictions.This prediction proved that the model could perform according to previously published VVER nuclear fuel performance parameters.A sensitivity study was also conducted to assess the effects of uncertainty on some of the model parameters.The model was then used to predict the VVER-1200 fuel performance parameters as a function of burnup,including the temperature profiles,gap width,fission gas release,and plenum pressure.A compilation of related material and thermomechanical models was conducted and included in the modeling to allow the user to investigate different material/performance models.Although the model was developed for normal operating conditions,it can be modified to include off-normal operating conditions.展开更多
Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods...Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods were used as supports to prepare MnOx/CeO2‐NR, MnOx/CZ‐NR, MnOx/CA‐NR, and MnOx/CS‐NR catalysts, respectively. The prepared supports and catalysts were comprehensively characterized by transmission electron microscopy (TEM), high‐resolution TEM, X‐ray diffraction, Raman and N2‐physisorption analyses, hydrogen temperature‐programmed reduction, ammonia temperature‐programmed desorption, in situ diffuse reflectance infrared Fourier‐transform spectroscopic analysis of the NH3 adsorption, and X‐ray photoelectron spectroscopy. Moreover, the catalytic performance and H2O+SO2 tolerance of these samples were evaluated through NH3‐selective catalytic reduction (NH3‐SCR) in the absence or presence of H2O and SO2. The obtained results show that the MnOx/CS‐NR catalyst exhibits the highest NOx conversion and the lowest N2O concentration, which result from the largest number of oxygen vacancies and acid sites, the highest Mn4+ content, and the lowest redox ability. The MnOx/CS‐NR catalyst also presents excellent resistance to H2O and SO2. All of these phenomena suggest that Si4+ is the optimal dopant for the MnOx/CeO2‐NR catalyst.展开更多
This paper presents a topology optimization approach for the surface flows on variable design domains.Via this approach,the matching between the pattern of a surface flow and the 2-manifold used to define the pattern ...This paper presents a topology optimization approach for the surface flows on variable design domains.Via this approach,the matching between the pattern of a surface flow and the 2-manifold used to define the pattern can be optimized,where the 2-manifold is implicitly defined on another fixed 2-manifold named as the base manifold.The fiber bundle topology optimization approach is developed based on the description of the topological structure of the surface flow by using the differential geometry concept of the fiber bundle.The material distribution method is used to achieve the evolution of the pattern of the surface flow.The evolution of the implicit 2-manifold is realized via a homeomorphous map.The design variable of the pattern of the surface flow and that of the implicit 2-manifold are regularized by two sequentially implemented surface-PDE filters.The two surface-PDE filters are coupled,because they are defined on the implicit 2-manifold and base manifold,respectively.The surface Navier-Stokes equations,defined on the implicit 2-manifold,are used to describe the surface flow.The fiber bundle topology optimization problem is analyzed using the continuous adjoint method implemented on the first-order Sobolev space.Several numerical examples have been provided to demonstrate this approach,where the combination of the viscous dissipation and pressure drop is used as the design objective.展开更多
Understanding the steady mechanism of biomass smoldering plays a great role in the utilization of smoldering technology.In this study numerical analysis of steady smoldering of biomass rods was performed.A two-dimensi...Understanding the steady mechanism of biomass smoldering plays a great role in the utilization of smoldering technology.In this study numerical analysis of steady smoldering of biomass rods was performed.A two-dimensional(2D)steady model taking into account both char oxidation and pyrolysis was developed on the basis of a calculated propagation velocity according to empirical correlation.The model was validated against the smoldering experiment of biomass rods under natural conditions,and the maximum error was smaller than 31%.Parameter sensitivity analysis found that propagation velocity decreases significantly while oxidation area and pyrolysis zone increase significantly with the increasing diameter of rod fuel.展开更多
The Cr O2 micro rod powder was synthesized by decomposing the Cr O3 flakes at a specific temperature to yield precursor and annealing such a precursor in a sealed glass tube. The magneto-transport properties have been...The Cr O2 micro rod powder was synthesized by decomposing the Cr O3 flakes at a specific temperature to yield precursor and annealing such a precursor in a sealed glass tube. The magneto-transport properties have been measured by a direct current four-probe method using a Cu/Cr O2rods/colloidal silver liquid electrode sandwich device. The largest magnetoresistance(MR) around *72 % was observed at 77 K with applied current of 0.05 l A. The non-linear I–V curve indicates a tunneling type transport properties and the tunneling barrier height is around 2.2 ± 0.04 e V at 77 K, which is obtained with fitting the non-linear I–V curves using Simmons' equation. A mixing of Cr oxides on the surface of Cr O2 rod observed by X-ray photoemission spectroscopy provides a tunneling barrier rather than a single phase of Cr2O3 insulating barrier. The MR shows strong bias voltage dependence and is ascribed to the two-step tunneling process.展开更多
基金The Science,Technology&Innovation Funding Authority(STDF)in cooperation with The Egyptian Knowledge Bank(EKB).
文摘Nuclear fuel performance modeling and simulation are critical tasks for nuclear fuel design optimization and safety analysis under normal and transient conditions.Fuel performance is a complicated phenomenon that involves thermal,mechanical,and irradiation mechanisms and requires special multiphysics modules.In this study,a fuel performance model was developed using the COMSOL Multiphysics platform.The modeling was performed for a 2D axis-symmetric geometry of a UO2fuel pellet in the E110 clad for VVER-1200 fuel.The modeling considers all relevant phenomena,including heat generation and conduction,gap heat transfer,elastic strain,mechanical contact,thermal expansion,grain growth,densification,fission gas generation and release,fission product swelling,gap/plenum pressure,and cladding thermal and irradiation creep.The model was validated using a code-to-code evaluation of the fuel pellet centerline and surface temperatures in the case of constant power,in addition to validation of fission gas release(FGR)predictions.This prediction proved that the model could perform according to previously published VVER nuclear fuel performance parameters.A sensitivity study was also conducted to assess the effects of uncertainty on some of the model parameters.The model was then used to predict the VVER-1200 fuel performance parameters as a function of burnup,including the temperature profiles,gap width,fission gas release,and plenum pressure.A compilation of related material and thermomechanical models was conducted and included in the modeling to allow the user to investigate different material/performance models.Although the model was developed for normal operating conditions,it can be modified to include off-normal operating conditions.
基金supported by National Natural Science Foundation of China (21876168, 21507130)Youth Innovation Promotion Association of CAS (2019376)the Chongqing Science & Technology Commission (cstc2016jcyjA0070, cstckjcxljrc13)~~
文摘Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods were used as supports to prepare MnOx/CeO2‐NR, MnOx/CZ‐NR, MnOx/CA‐NR, and MnOx/CS‐NR catalysts, respectively. The prepared supports and catalysts were comprehensively characterized by transmission electron microscopy (TEM), high‐resolution TEM, X‐ray diffraction, Raman and N2‐physisorption analyses, hydrogen temperature‐programmed reduction, ammonia temperature‐programmed desorption, in situ diffuse reflectance infrared Fourier‐transform spectroscopic analysis of the NH3 adsorption, and X‐ray photoelectron spectroscopy. Moreover, the catalytic performance and H2O+SO2 tolerance of these samples were evaluated through NH3‐selective catalytic reduction (NH3‐SCR) in the absence or presence of H2O and SO2. The obtained results show that the MnOx/CS‐NR catalyst exhibits the highest NOx conversion and the lowest N2O concentration, which result from the largest number of oxygen vacancies and acid sites, the highest Mn4+ content, and the lowest redox ability. The MnOx/CS‐NR catalyst also presents excellent resistance to H2O and SO2. All of these phenomena suggest that Si4+ is the optimal dopant for the MnOx/CeO2‐NR catalyst.
基金Supported by National Natural Science Foundation of China (Grant No.51875545)Innovation Grant of Changchun Institute of Optics+2 种基金Fine Mechanics and Physics (CIOMP)CAS Project for Young Scientists in Basic Research of China (Grant No.YSBR-066)Science and Technology Development Program of Jilin Province of China (Grant No.SKL202302020)。
文摘This paper presents a topology optimization approach for the surface flows on variable design domains.Via this approach,the matching between the pattern of a surface flow and the 2-manifold used to define the pattern can be optimized,where the 2-manifold is implicitly defined on another fixed 2-manifold named as the base manifold.The fiber bundle topology optimization approach is developed based on the description of the topological structure of the surface flow by using the differential geometry concept of the fiber bundle.The material distribution method is used to achieve the evolution of the pattern of the surface flow.The evolution of the implicit 2-manifold is realized via a homeomorphous map.The design variable of the pattern of the surface flow and that of the implicit 2-manifold are regularized by two sequentially implemented surface-PDE filters.The two surface-PDE filters are coupled,because they are defined on the implicit 2-manifold and base manifold,respectively.The surface Navier-Stokes equations,defined on the implicit 2-manifold,are used to describe the surface flow.The fiber bundle topology optimization problem is analyzed using the continuous adjoint method implemented on the first-order Sobolev space.Several numerical examples have been provided to demonstrate this approach,where the combination of the viscous dissipation and pressure drop is used as the design objective.
文摘Understanding the steady mechanism of biomass smoldering plays a great role in the utilization of smoldering technology.In this study numerical analysis of steady smoldering of biomass rods was performed.A two-dimensional(2D)steady model taking into account both char oxidation and pyrolysis was developed on the basis of a calculated propagation velocity according to empirical correlation.The model was validated against the smoldering experiment of biomass rods under natural conditions,and the maximum error was smaller than 31%.Parameter sensitivity analysis found that propagation velocity decreases significantly while oxidation area and pyrolysis zone increase significantly with the increasing diameter of rod fuel.
基金supported by the NNSF of China (Nos. 51171076, 51101079)the Natural Science Foundation of Gansu Province (No. 145RJZA154)+1 种基金the Fundamental Research Funds for the Central Universities (No. Lzujbky-2012-27, Lzujbky-2010172)the CERS of China (No. CERS-1-89)
文摘The Cr O2 micro rod powder was synthesized by decomposing the Cr O3 flakes at a specific temperature to yield precursor and annealing such a precursor in a sealed glass tube. The magneto-transport properties have been measured by a direct current four-probe method using a Cu/Cr O2rods/colloidal silver liquid electrode sandwich device. The largest magnetoresistance(MR) around *72 % was observed at 77 K with applied current of 0.05 l A. The non-linear I–V curve indicates a tunneling type transport properties and the tunneling barrier height is around 2.2 ± 0.04 e V at 77 K, which is obtained with fitting the non-linear I–V curves using Simmons' equation. A mixing of Cr oxides on the surface of Cr O2 rod observed by X-ray photoemission spectroscopy provides a tunneling barrier rather than a single phase of Cr2O3 insulating barrier. The MR shows strong bias voltage dependence and is ascribed to the two-step tunneling process.