期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Changes in temperature extremes over China under 1.5 ℃ and 2 ℃ global warming targets 被引量:31
1
作者 SHI Chen JIANG Zhi-Hong +1 位作者 CHEN Wei-Lin Laurent LI 《Advances in Climate Change Research》 SCIE CSCD 2018年第2期120-129,共10页
The long-term goal of the 2015 Paris Agreement is to limit global warming to well below 2 ℃above pre-industrial levels and to pursue efforts to limit it to 1.5 ℃. However, for climate mitigation and adaption efforts... The long-term goal of the 2015 Paris Agreement is to limit global warming to well below 2 ℃above pre-industrial levels and to pursue efforts to limit it to 1.5 ℃. However, for climate mitigation and adaption efforts, further studies are still needed to understand the regional consequences between the two global warming limits. Here we provide an assessment of changes in temperature extremes over China (relative to 1986-2005) at 1.5 ℃ and 2 ℃ warming levels (relative to 1861-1900) by using the 5th phase of the Coupled Model Intercomparison Project (CMIP5) models under three RCP scenarios (RCP2.6, RCP4.5, RCP8.5). Results show that the increases in mean temperature and temperature extremes over China are greater than that in global mean temperature. With respect to 1986-2005, the temperature of hottest day (TXx) and coldest night (TNn) are projected to increase about 1/1.6 ℃ and 1.1/1.8 ℃, whereas warm days (TX90p) and warm spell duration (WSDI) will increase about 7.5/13.8% and 15/30 d for the 1.5/2 ℃ global warming target, respectively. Under an additional 0.5 ℃ global warming, the projected increases of temperature in warmest day/night and coldest day/night are both more than 0.5 ℃ across almost the whole China. In Northwest China, Northeast China and the Tibetan Plateau, the projected changes are particularly sensitive to the additional 0.5 ℃ global warming, for example, multi-model mean increase in coldest day (TXn) and coldest night (TNn) will be about 2 times higher than a change of 0.5 ℃ global warming. Although the area-averaged changes in temperature extremes are very similar for different scenarios, spatial hotspot still exists, such as in Northwest China and North China, the increases in temperatures are apparently larger in RCP8.5 than that in RCP4.5. 展开更多
关键词 1.5 global warming 2 global warming temperature extremes CMIP5 China
下载PDF
Changes in surface air temperature over China under the 1.5 and 2.0 ℃ global warming targets 被引量:15
2
作者 FU Yuan-Hai LU Ri-Yu GUO Dong 《Advances in Climate Change Research》 SCIE CSCD 2018年第2期112-119,共8页
This study investigated the projected changes in the annual mean surface air temperature (SAT) over China under the 1.5 and 2.0 ℃ targets, by analyzing the outputs from 22 models of the Coupled Model Intercompariso... This study investigated the projected changes in the annual mean surface air temperature (SAT) over China under the 1.5 and 2.0 ℃ targets, by analyzing the outputs from 22 models of the Coupled Model Intercomparison Project Phase 5. Under the 1.5 ℃ target, the scope of changes in the average SAT over China is quite narrow and has the largest probability to increase by 1.7-2.0 ℃ under the various RCP pathways, although the time of occurrence of the 1.5 ℃ target has a large spread of 40-60 years. Similarly, the models consistently show that the average SAT over China would most likely increase by 2.4-2.7 ℃ under the 2.0 ℃ target. Furthermore, the warming shows a clear spatial distinction over China: being stronger in the northwest part and weaker in the southeast part. Under all RCP pathways, the SAT over the northwest part would increase by 1.9-2.1 ℃ for the 1.5℃ target, which is much stronger than the SAT increase over the southeast part (1.3-1.5 ℃). A similar spatial pattern appears for the 2.0 ℃ target. 展开更多
关键词 temperature WARMING 1.5 target 2.0 target China
下载PDF
Risks of temperature extremes over China under 1.5℃ and 2℃ global warming 被引量:8
3
作者 SHI Chen JIANG Zhi-Hong +3 位作者 ZHU Lian-Hua Xuebin ZHANG YAO Yi-Yi Laurent LI 《Advances in Climate Change Research》 SCIE CSCD 2020年第3期172-184,共13页
The Paris Agreement aims to keep global warming to well below 2℃ above pre-industrial levels and to pursue efforts to limit it to 1.5℃,recognizing this will reduce the risks of natural disasters significantly.As cha... The Paris Agreement aims to keep global warming to well below 2℃ above pre-industrial levels and to pursue efforts to limit it to 1.5℃,recognizing this will reduce the risks of natural disasters significantly.As changes in the risks of temperature extremes are often associated with changes in the temperature probability distribution,further analysis is still needed to improve understanding of the warm extremes over China.In this study,changes in the occurrence probability of temperature extremes and statistic characteristics of the temperature distribution are investigated using the fifth phase of the Coupled Model Intercomparison Project(CMIP5)multimodel simulations from 1861 to 2100.The risks of the once-in-100-year TXx and TNx events are projected to increase by 14.4 and 31.4 times at 1.5℃ warming.Even,the corresponding risks under 2℃ global warming are 23.3 and 50.6,implying that the once-in-100-year TXx and TNx events are expected to occur about every 5 and 2 years over China,respectively.The Tibetan Plateau,Northwest China and south of the Yangtze River are in greater risks suffering hot extremes(both day and night extremes).Changes in the occurrence probability of warm extremes are generally well explained by the combination of the shifts in location and scale parameters in areas with grown variability,i.e.,the Tibetan Plateau for TXx,south of the Yangtze River for both TXx and TNx.The location(scale)parameter leading the risks of once-in-20-year TXx to increase by more than 5(0.25)and 3(0.75)times under 2℃ warming in the Tibetan Plateau and south of the Yangtze River,respectively.The location parameter is more important for regions with decreased variability e.g.,the Tibetan Plateau for TNx,Northwest China for both TXx and TNx,with risks increase by more than 3,6 and 4 times due to changes in location. 展开更多
关键词 1.5℃and 2global warming temperature extremes Risk ratios GEV CMIP5
原文传递
Bias correction and projection of surface air temperature in LMDZ multiple simulation over central and eastern China 被引量:4
4
作者 GUO Lian-Yi GAO Qian +1 位作者 JIANG Zhi-Hong Laurent LI 《Advances in Climate Change Research》 SCIE CSCD 2018年第1期81-92,共12页
Based on LMDZ4 daily temperature dataset,equidistant cumulative distribution function matching method(EDCDFm)and cumulative distribution function-transform method(CDF-t)are used to evaluate the ability of models in si... Based on LMDZ4 daily temperature dataset,equidistant cumulative distribution function matching method(EDCDFm)and cumulative distribution function-transform method(CDF-t)are used to evaluate the ability of models in simulating extreme temperature over central and eastern China.The future temperature change is then projected.The results show that the EDCDFm and CDF-t methods function effectively correct the spatial distribution of daily mean temperature and extreme temperature,significantly reduce the biases of the model simulation and effectively improve the capacity of models for spatial pattern of extreme temperature.However,the cold bias of the CDF-t method in winter is obviously higher than that of the EDCDFm method,and the temperature change curve of the EDCDFm method is closer to the observation than that of the CDF-t method.The projection based on the EDCDFm method shows that under the RCP4.5 emission scenario,the temperature in the study area shows a warming trend.Relative to 1986e2005,the mean temperature is projected to increase by 0.76,1.84,and 2.10℃during 2017e2036,2046e2065,and 2080e2099,respectively.The spatial change for the mean,maximum,and minimum temperature in the three future periods have good consistency;warming in northern China is higher than that in the south.Uncertainties in temperature projection are large in the Tibetan Plateau and Sichuan Basin.Frost days decrease significantly,especially in the Tibetan Plateau,and the frost days in the three periods decrease by more than 15,30,and 40 d,respectively.The variation of heat wave indice is the smallest;the increase of heat wave is mainly in eastern China,and the increase in South China is more than 2 d.Besides,under the global warming of 1.5℃and 2℃,the response characteristics of extreme temperature over central and eastern China are also analyzed.The results show that the mean temperature,maximum temperature and minimum temperature in the study area increase by more than 0.75℃under 1.5℃target and over 1.25℃under 2℃target,especially in the northwestern China and the Tibetan Plateau,relative to 1986e2005.Additionally,comparing two warming targets,the difference of three temperature indices in parts of northeastern China is over 1.5℃,while more than 3 d for heat wave. 展开更多
关键词 EDCDFm METHOD CDF-T METHOD FUTURE temperature PROJECTION 1.5℃and 2global WARMING
下载PDF
全球能源系统转型趋势与低碳转型路径--来自于IPCC第六次评估报告的证据 被引量:20
5
作者 魏一鸣 韩融 +3 位作者 余碧莹 康佳宁 刘丽静 廖华 《北京理工大学学报(社会科学版)》 CSSCI 北大核心 2022年第4期163-188,共26页
能源是经济社会发展的基础。煤炭、石油等化石能源的转化和使用与碳排放密切相关。自工业革命以来,人类大量使用化石能源,排放CO_(2) 、甲烷、氧化亚氮等温室气体,造成大气中温室气体浓度快速上升,全球气候加速变暖。因此,控制能源系统... 能源是经济社会发展的基础。煤炭、石油等化石能源的转化和使用与碳排放密切相关。自工业革命以来,人类大量使用化石能源,排放CO_(2) 、甲烷、氧化亚氮等温室气体,造成大气中温室气体浓度快速上升,全球气候加速变暖。因此,控制能源系统碳强度、增加非化石能源占比是应对气候变化的关键举措。目前,全球约70%的碳排放来自于能源部门,21世纪中叶实现CO_(2) 的净零排放首先必须是实现能源系统的净零排放。2022年4月,联合国气候变化专门委员会(IPCC)第六次评估报告(AR6)第三工作组(WGIII)报告《气候变化2022:减缓气候变化》正式发布。报告指出,2010—2019年全球温室气体年平均排放量处于人类历史上的最高水平,但增长速度已经趋缓。为实现《巴黎协定》提出的2℃和1.5℃温控目标,各行业都需要实施温室气体深度减排,其中,能源系统减排尤其重要和迫切。为实现1.5℃目标,整个能源系统都需要彻底转型和持续变革,包括大幅减少化石能源的使用、建设由可再生能源为主体的新型电力系统、广泛推行电气化等。在此,基于IPCC AR6第三工作组报告,综述了全球能源转型的特征与趋势,未来的机遇与挑战。 展开更多
关键词 气候变化 全球能源转型 2度目标和1.5度目标 IPCC第六次评估报告
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部