[目的]本文旨在解决在自然环境下不同成熟度苹果目标检测精度较低的问题。[方法]提出了一种改进的YOLOv5s模型SODSTR-YOLOv5s(YOLOv5s with small detection layer and omni-dimensional dynamic convolution and swin transformer bloc...[目的]本文旨在解决在自然环境下不同成熟度苹果目标检测精度较低的问题。[方法]提出了一种改进的YOLOv5s模型SODSTR-YOLOv5s(YOLOv5s with small detection layer and omni-dimensional dynamic convolution and swin transformer block),用于不同成熟度苹果检测。首先改进YOLOv5s的多尺度目标检测层,在Prediction中构建检测160×160特征图的检测头,提高小尺寸的不同成熟度苹果的检测精度;其次在Backbone结构中融合Swin Transformer Block,加强同级成熟度的苹果纹理特征融合,弱化纹理特征分布差异带来的消极影响,提高模型泛化能力;最后将Neck结构的Conv模块替换为动态卷积模块ODConv,细化局部特征映射,实现局部苹果细粒度特征的充分提取。基于不同成熟度苹果数据集进行试验,验证改进模型的性能。[结果]改进模型SODSTR-YOLOv5s检测的精确率、召回率、平均精度均值分别为89.1%、95.5%、93.6%,高、中、低成熟度苹果平均精度均值分别为94.1%、93.1%、93.7%,平均检测时间为16 ms,参数量为7.34 M。相比于YOLOv5s模型,改进模型SODSTR-YOLOv5s精确率、召回率、平均精度均值分别提高了3.8%、5.0%、2.9%,参数量和平均检测时间分别增加了0.32 M和5 ms。[结论]改进模型SODSTR-YOLOv5s提升了在自然环境下对不同成熟度苹果的检测能力,能较好地满足实际采摘苹果的检测要求。展开更多
文摘[目的]本文旨在解决在自然环境下不同成熟度苹果目标检测精度较低的问题。[方法]提出了一种改进的YOLOv5s模型SODSTR-YOLOv5s(YOLOv5s with small detection layer and omni-dimensional dynamic convolution and swin transformer block),用于不同成熟度苹果检测。首先改进YOLOv5s的多尺度目标检测层,在Prediction中构建检测160×160特征图的检测头,提高小尺寸的不同成熟度苹果的检测精度;其次在Backbone结构中融合Swin Transformer Block,加强同级成熟度的苹果纹理特征融合,弱化纹理特征分布差异带来的消极影响,提高模型泛化能力;最后将Neck结构的Conv模块替换为动态卷积模块ODConv,细化局部特征映射,实现局部苹果细粒度特征的充分提取。基于不同成熟度苹果数据集进行试验,验证改进模型的性能。[结果]改进模型SODSTR-YOLOv5s检测的精确率、召回率、平均精度均值分别为89.1%、95.5%、93.6%,高、中、低成熟度苹果平均精度均值分别为94.1%、93.1%、93.7%,平均检测时间为16 ms,参数量为7.34 M。相比于YOLOv5s模型,改进模型SODSTR-YOLOv5s精确率、召回率、平均精度均值分别提高了3.8%、5.0%、2.9%,参数量和平均检测时间分别增加了0.32 M和5 ms。[结论]改进模型SODSTR-YOLOv5s提升了在自然环境下对不同成熟度苹果的检测能力,能较好地满足实际采摘苹果的检测要求。
文摘运动目标传统检测方法只考虑图像的亮度或纹理等某一种特性,受特异值影响较大,对噪声比较敏感,鲁棒性也不够好,而且背景恢复精度不高。针对以上局限性,提出一种融合结构相似度(structural similarity,SSIM)全参考模型和鲁棒主成分分析(robust principal component analysis,RPCA)的运动目标检测方法。此方法综合考虑图像的亮度、对比度和结构三种特性,不采用传统的背景减除法,而是把图像像素点的结构相似度作为度量来实现运动对象与背景的分离。实验结果表明,此方法准确率可达0.95,且F度量较传统运动目标检测算法平均提升0.15,总体上比传统方法更具优势。