该文提出了一种基于2维矢量接收阵列的双基地MIMO雷达系统多目标ADOD(Azimuth Direction Of Departure),ADOA(Azimuth Direction Of Arrival)和EDOA(Elevation Direction Of Arrival)联合估计算法。雷达发射端采用均匀标量线阵,接收端...该文提出了一种基于2维矢量接收阵列的双基地MIMO雷达系统多目标ADOD(Azimuth Direction Of Departure),ADOA(Azimuth Direction Of Arrival)和EDOA(Elevation Direction Of Arrival)联合估计算法。雷达发射端采用均匀标量线阵,接收端将常规矢量阵元的每个电磁偶极子相互分离构成2维接收阵列。算法通过张量因子分解获取各流形矩阵,并利用ESPRIT算法估计目标的ADOD。文中给出了接收阵列的一种特定阵元排列方式,并改进了矢量叉积法用于估计目标的2D-DOA。与传统方法相比,该文所用阵列结构可通过扩展接收阵列孔径提高雷达的角度估计性能,相互分离的偶极子弱化了传统矢量阵的天线互耦效应。相应算法避免了谱峰搜索,能够自动配对,仿真实验证明了算法的有效性。展开更多
In this paper, using the variable coefficient generalized projected Rieatti equation expansion method, we present explicit solutions of the (2+1)-dimensional variable coefficients Broer-Kaup (VCBK) equations. The...In this paper, using the variable coefficient generalized projected Rieatti equation expansion method, we present explicit solutions of the (2+1)-dimensional variable coefficients Broer-Kaup (VCBK) equations. These solutions include Weierstrass function solution, solitary wave solutions, soliton-like solutions and trigonometric function solutions. Among these solutions, some are found for the first time. Because of the three or four arbitrary functions, rich localized excitations can be found.展开更多
文摘该文提出了一种基于2维矢量接收阵列的双基地MIMO雷达系统多目标ADOD(Azimuth Direction Of Departure),ADOA(Azimuth Direction Of Arrival)和EDOA(Elevation Direction Of Arrival)联合估计算法。雷达发射端采用均匀标量线阵,接收端将常规矢量阵元的每个电磁偶极子相互分离构成2维接收阵列。算法通过张量因子分解获取各流形矩阵,并利用ESPRIT算法估计目标的ADOD。文中给出了接收阵列的一种特定阵元排列方式,并改进了矢量叉积法用于估计目标的2D-DOA。与传统方法相比,该文所用阵列结构可通过扩展接收阵列孔径提高雷达的角度估计性能,相互分离的偶极子弱化了传统矢量阵的天线互耦效应。相应算法避免了谱峰搜索,能够自动配对,仿真实验证明了算法的有效性。
基金The project supported by National Natural Science Foundation of China undcr Grant No. 10172056 .
文摘In this paper, using the variable coefficient generalized projected Rieatti equation expansion method, we present explicit solutions of the (2+1)-dimensional variable coefficients Broer-Kaup (VCBK) equations. These solutions include Weierstrass function solution, solitary wave solutions, soliton-like solutions and trigonometric function solutions. Among these solutions, some are found for the first time. Because of the three or four arbitrary functions, rich localized excitations can be found.