为了准确估算锂电池的剩余荷电状态(State of Charge,SOC),在2阶RC等效电路模型基础上,采用带遗忘因子递推最小二乘法(Forgetting Factor Recursive Least Square,FFRLS)对电池模型进行在线参数辨识,提高模型精度,联合扩展卡尔曼滤波算...为了准确估算锂电池的剩余荷电状态(State of Charge,SOC),在2阶RC等效电路模型基础上,采用带遗忘因子递推最小二乘法(Forgetting Factor Recursive Least Square,FFRLS)对电池模型进行在线参数辨识,提高模型精度,联合扩展卡尔曼滤波算法(Extended Kalman Filter,EKF)对锂电池的SOC进行估算。在MATLAB环境下进行模拟仿真,仿真结果表明:FFRLS算法辨识后电池模型得仿真电压与实际电压得最大误差为0.029,平均误差约为0.0006,联合EKF对SOC的估算误差在绝对值3%以内,其中最大误差绝对值为2.6%。展开更多
准确估算并合理利用电池的荷电状态(state of charge,SOC)与健康状态(state of health,SOH)可以延长电池的使用寿命。为了实现准确的SOC-SOH在线估计,在扩展卡尔曼滤波的基础上,采用多尺度并行扩展卡尔曼滤波估计算法(multi-scale doubl...准确估算并合理利用电池的荷电状态(state of charge,SOC)与健康状态(state of health,SOH)可以延长电池的使用寿命。为了实现准确的SOC-SOH在线估计,在扩展卡尔曼滤波的基础上,采用多尺度并行扩展卡尔曼滤波估计算法(multi-scale double extended Kalman filter,MDEKF)提高估计精度。在建立电池2阶RC等效电路模型上,利用最小二乘法对模型参数进行辨识,设计并行结构的滤波器进行电池SOC估计和参数修正,并以电池组容量值作为表征量对SOH进行估算。仿真实验结果表明,SOC估计误差由1.43%降低到1.10%,SOH估计结果稳定在0.5%以内,验证了算法的快速收敛性和实时性。展开更多
文摘为了准确估算锂电池的剩余荷电状态(State of Charge,SOC),在2阶RC等效电路模型基础上,采用带遗忘因子递推最小二乘法(Forgetting Factor Recursive Least Square,FFRLS)对电池模型进行在线参数辨识,提高模型精度,联合扩展卡尔曼滤波算法(Extended Kalman Filter,EKF)对锂电池的SOC进行估算。在MATLAB环境下进行模拟仿真,仿真结果表明:FFRLS算法辨识后电池模型得仿真电压与实际电压得最大误差为0.029,平均误差约为0.0006,联合EKF对SOC的估算误差在绝对值3%以内,其中最大误差绝对值为2.6%。
文摘准确估算并合理利用电池的荷电状态(state of charge,SOC)与健康状态(state of health,SOH)可以延长电池的使用寿命。为了实现准确的SOC-SOH在线估计,在扩展卡尔曼滤波的基础上,采用多尺度并行扩展卡尔曼滤波估计算法(multi-scale double extended Kalman filter,MDEKF)提高估计精度。在建立电池2阶RC等效电路模型上,利用最小二乘法对模型参数进行辨识,设计并行结构的滤波器进行电池SOC估计和参数修正,并以电池组容量值作为表征量对SOH进行估算。仿真实验结果表明,SOC估计误差由1.43%降低到1.10%,SOH估计结果稳定在0.5%以内,验证了算法的快速收敛性和实时性。