Spinel metal oxides containing Mn,Co,or Fe(AB_(2)O_(4),A/B=Mn/Fe/Co)are one of the most promising nonPt electrocatalysts for oxygen reduction reaction(ORR)in alkaline conditions.However,the low conductivity of metal o...Spinel metal oxides containing Mn,Co,or Fe(AB_(2)O_(4),A/B=Mn/Fe/Co)are one of the most promising nonPt electrocatalysts for oxygen reduction reaction(ORR)in alkaline conditions.However,the low conductivity of metal oxides and the poor intrinsic activities of transition metal sites lead to unsatisfactory ORR performance.In this study,eutectic molten salt(EMS)treatment is employed to reconstruct the atomic arrangement of MnFe_(2)O_(4)electrocatalyst as a prototype for enhancing ORR performance.Comprehensive analyses by using XAFS,soft XAS,XPS,and electrochemical methods reveal that the EMS treatment reduces the oxygen vacancies and spinel inverse in MnFe_(2)O_(4)effectively,which improves the electric conductivity and increases the population of more catalytically active Mn^(2+)sites with tetrahedral coordination.Moreover,the enhanced Mn-O interaction after EMS treatment is conducive to the adsorption and activation of O_(2),which promotes the first electron transfer step(generally considered as the ratedetermining step)of the ORR process.As a result,the EMS treated MnFe_(2)O_(4)catalyst delivers a positive shift of 40 mV in the ORR half-wave potential and a two-fold enhanced mass/specific activity.This work provides a convenient approach to manipulate the atomic architecture and local electronic structure of spinel oxides as ORR electrocatalysts and a comprehensive understanding of the structureperformance relationship from the molecular/atomic scale.展开更多
Oxygen vacancy plays vital roles in regulating the electronic and charge distribution of the oxygen deficient materials.Herein,abundant oxygen vacancies are created during assembling the two-dimensional(2D)ultra-thin ...Oxygen vacancy plays vital roles in regulating the electronic and charge distribution of the oxygen deficient materials.Herein,abundant oxygen vacancies are created during assembling the two-dimensional(2D)ultra-thin Bi_(2)MoO_(6) nanoflakes into three dimensional(3D)Bi_(2)MoO_(6) nanospheres,resulting in significantly improved performance for photocatalytical conversion of CO_(2) into liquid hydrocarbons.The increased performance is contributed by two primary sites,namely the abundant oxygen vacancy and the exposed molybdenum(Mo)atom induced by oxygen-migration,as revealed by the theoretical calculation.The oxygen vacancy(Ov)and uncovered Mo atom serving as dual binding sites for trapping CO_(2) molecules render the synchronous fixation-reduction process,resulting in the decline of activation energy for CO_(2) reduction from 2.15 eV on bulk Bi_(2)MoO_(6) to 1.42 eV on Ov-rich Bi_(2)MoO_(6).Such a striking decrease in the activation energy induces the efficient selective generation of liquid hydrocarbons,especially the methanol(C_(2)H_(5) OH)and ethanol(CH_(3) OH).The yields of CH_(3) OH and C_(2)H_(5) OH over the optimal Ov-Bi_(2)MoO_(6) is high up to 106.5 and 10.3μmol g^(-1) respectively,greatly outperforming that on the Bulk-Bi_(2)MoO_(6).展开更多
The incorporation of partial A-site substitution in perovskite oxides represents a promising strategy for precisely controlling the electronic configuration and enhancing its intrinsic catalytic activity.Conventional ...The incorporation of partial A-site substitution in perovskite oxides represents a promising strategy for precisely controlling the electronic configuration and enhancing its intrinsic catalytic activity.Conventional methods for A-site substitution typically involve prolonged high-temperature processes.While these processes promote the development of unique nanostructures with highly exposed active sites,they often result in the uncontrolled configuration of introduced elements.Herein,we present a novel approach for synthesizing two-dimensional(2D)porous GdFeO_(3) perovskite with A-site strontium(Sr)substitution utilizing microwave shock method.This technique enables precise control of the Sr content and simultaneous construction of 2D porous structures in one step,capitalizing on the advantages of rapid heating and cooling(temperature~1100 K,rate~70 K s^(-1)).The active sites of this oxygen-rich defect structure can be clearly revealed through the simulation of the electronic configuration and the comprehensive analysis of the crystal structure.For electrocatalytic oxygen evolution reaction application,the synthesized 2D porous Gd_(0.8)Sr_(0.2)FeO_(3) electrocatalyst exhibits an exceptional overpotential of 294 mV at a current density of 10 mA cm^(-2)and a small Tafel slope of 55.85 mV dec^(-1)in alkaline electrolytes.This study offers a fresh perspective on designing crystal configurations and the construction of nanostructures in perovskite.展开更多
The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction...The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction(ORR)compared to the disordered atomic structures in ordinary solid-solution alloy NPs.Accordingly,through a facile and scalable synthetic method,a series of carbon-supported ultrafine Pt_3Co_(x)Mn_(1-x)ternary INPs are prepared in this work,which possess the"skin-like"ultrathin Pt shells,the ordered L1_(2) atomic structure,and the high-even dispersion on supports(L1_(2)-Pt_3Co_(x)Mn_(1-x)/~SPt INPs/C).Electrochemical results present that the composition-optimized L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C exhibits the highest electrocata lytic activity among the series,which are also much better than those of the pristine ultrafine Pt/C.Besides,it also has a greatly enhanced electrochemical stability.In addition,the effects of annealing temperature and time are further investigated.More importantly,such superior ORR electrocatalytic performance of L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C are also well demonstrated in practical fuel cells.Physicochemical characterization analyses further reveal the major origins of the greatly enhanced ORR electrocata lytic performance:the Pt-Co-Mn alloy-induced geometric and ligand effects as well as the extremely high L1_(2) atomic-ordering degree.This work not only successfully develops a highly active and stable ordered ternary intermetallic ORR electrocatalyst,but also elucidates the corresponding"structure-function"relationship,which can be further applied in designing other intermetallic(electro)catalysts.展开更多
Introducing catalytically-active Fe and N into carbon materials results in promising FeNC catalysts for oxygen reduction reaction. However, the doped Fe and N species are frequently subject to heavy loss in a traditio...Introducing catalytically-active Fe and N into carbon materials results in promising FeNC catalysts for oxygen reduction reaction. However, the doped Fe and N species are frequently subject to heavy loss in a traditional carbonization process owing to Fe agglomeration and evaporation of N-contained small molecules. Besides, pyrolysis may make materials sintering which embeds a large number of active sites in the bulk phase and impedes direct exposure of reactive centers to the reactants. We here report that when calcinations, the addition of ZnCl2, an ordinary salt with very wide melting temperature range well covering the carbonization process of the precursor iron porphyrin, can significantly enhance the doping level of the active species and simultaneously create highly porous structures for FeNC catalysts. The obtained FeNC demonstrates ultrahigh catalytic activities even significantly better than Pt/C in oxygen reduction reaction.展开更多
The oxygen evolution reaction (OER) dominates the efficiency of electrocatalytic water splitting owing to its sluggish kinetics.Perovskite oxides (ABO_(3)) have emerged as promising candidates to accelerate the OER pr...The oxygen evolution reaction (OER) dominates the efficiency of electrocatalytic water splitting owing to its sluggish kinetics.Perovskite oxides (ABO_(3)) have emerged as promising candidates to accelerate the OER process owing to their high intrinsic activities and tailorable properties.Fe ions in perovskite oxides have been proved to be a highly catalytic element for OER,while some Fe-based perovskites such as SrTi_(0.8)Fe_(0.2)O_(3-δ)(STF) and La_(0.66)Ti_(0.8)Fe_(0.2)O_(3-δ)(LTF) exhibit inferior OER activity.Yet the essential reason is still unclear and the effective method to promote the activity of such perovskite is also lacking.Herein,an in-situ exsolution strategy was proposed to boost the OER by migrating Fe from the bulk to the surface.Significantly enhanced OER activity was achieved on STF and LTF perovskites with surfacedecorated oxygen vacancies and Fe nanoparticles.In addition,theoretical calculation confirmed that the oxygen vacancies and Fe nanoparticle on surface could lower the overpotential of OER by facilitating the adsorption of OH^(-).From this study,migration of the active elements in perovskite is found to be an effective strategy to increase the quantity and activity of active sites,providing new insights and understanding for designing efficient OER catalysts.展开更多
IrO2 and IrRuOx(Ir:Ru 60:40 at%),supported by 50 wt%onto titania nanotubes(TNTs)and(3 at%Nb)Nb-doped titania nanotubes(Nb-TNTs),as electrocatalysts for the oxygen evolution reaction(OER),were synthesized and character...IrO2 and IrRuOx(Ir:Ru 60:40 at%),supported by 50 wt%onto titania nanotubes(TNTs)and(3 at%Nb)Nb-doped titania nanotubes(Nb-TNTs),as electrocatalysts for the oxygen evolution reaction(OER),were synthesized and characterized by means of structural,surface analytical and electrochemical techniques.Nb doping of titania significantly increased the surface area of the support from 145(TNTs)to 260 m2g-1(Nb-TNTs),which was significantly higher than those of the Nb-doped titania supports previously reported in the literature.The surface analytical techniques showed good dispersion of the catalysts onto the supports.The X-ray photoelectron spectroscopy analyses showed that Nb was mainly in the form of Nb(IV)species,the suitable form to behave as a donor introducing free electrons to the conduction band of titania.The redox transitions of the cyclic voltammograms,in agreement with the XPS results,were found to be reversible.Despite the supported materials presented bigger crystallite sizes than the unsupported ones,the total number of active sites of the former was also higher due to their better catalyst dispersion.Considering the outer and the total charges of the cyclic voltammograms in the range 0.1–1.4 V,stability and electrode potentials at given current densities,the preferred catalyst was Ir O2 supported on the Nb-TNTs.The electrode potentials corresponding to given current densities were between the smallest ones given in the literature despite the small oxide loading used in this work and its Nb doping,thus making the Nb-TNTs-supported IrO2 catalyst a promising candidate for the OER.The good dispersion of IrO2,high specific surface area of the Nb-doped supports,accessibility of the electroactive centers,increased stability due to Nb doping and electron donor properties of the Nb(IV)oxide species were considered the main reasons for its good performance.展开更多
Oxygen vacancies(Vo)in electrocatalysts are closely correlated with the hydrogen evo-lution reaction(HER)activity.The role of vacancy defects and the effect of their concentration,how-ever,yet remains unclear.Herein,B...Oxygen vacancies(Vo)in electrocatalysts are closely correlated with the hydrogen evo-lution reaction(HER)activity.The role of vacancy defects and the effect of their concentration,how-ever,yet remains unclear.Herein,Bi2O3,an unfavorable electrocata-lyst for the HER due to a less than ideal hydrogen adsorption Gibbs free energy(ΔGH*),is utilized as a perfect model to explore the func-tion of Vo on HER performance.Through a facile plasma irradia-tion strategy,Bi2O3 nanosheets with different Vo concentrations are fabricated to evaluate the influence of defects on the HER process.Unexpectedly,while the generated oxygen vacancies contribute to the enhanced HER performance,higher Vo concentrations beyond a saturation value result in a significant drop in HER activity.By tunning the Vo concentration in the Bi_(2)O_(3)nanosheets via adjusting the treatment time,the Bi2O3 catalyst with an optimized oxygen vacancy concentration and detectable charge carrier concentration of 1.52×10^(24)cm^(−3)demonstrates enhanced HER performance with an overpotential of 174.2 mV to reach 10 mA cm^(−2),a Tafel slope of 80 mV dec−1,and an exchange current density of 316 mA cm−2 in an alkaline solution,which approaches the top-tier activity among Bi-based HER electrocatalysts.Density-functional theory calculations confirm the preferred adsorption of H*onto Bi2O3 as a function of oxygen chemical potential(ΔμO)and oxygen partial potential(PO2)and reveal that high Vo concentrations result in excessive stability of adsorbed hydrogen and hence the inferior HER activity.This study reveals the oxygen vacancy concentration-HER catalytic activity relationship and provides insights into activating catalytically inert materials into highly efficient electrocatalysts.展开更多
Improving the OER activity of noble metal-based materials is of profound importance to minimize the usage of noble metals and lower the cost.Here,we report considerable improvement on the catalytic activity of RuO_(2)...Improving the OER activity of noble metal-based materials is of profound importance to minimize the usage of noble metals and lower the cost.Here,we report considerable improvement on the catalytic activity of RuO_(2) particles for OER in both alkali and acid environments.The RuO_(2) nanoparticles were treated with a method of pulse laser ablation.Numerous Ru and RuO_(2) clusters were generated at the surface of RuO_(2) nanoparticles after the laser ablation,forming a lychee-shaped morphology.The larger pulse energy RuO_(2) nanoparticles are treated with,the better the OER activity can be.DFT calculations shows that the surface tension induced by the lychee-shaped morphology benefits the OER performance.Our best sample gives an overpotential of 172 mV(at 10 mA cm^(-2))and a Tafel slope of 53.5 mV dec^(-1) in KOH,while an overpotential of 219 mV and a Tafel slope of 44.9 mV dec^(-1) in H_(2)SO_(4),which are of topclass results.This work may inspire a new way to develop high-performance electrocatalysts for OER.展开更多
Ni^(2+)/Cu^(2+)/SO_(4)^(2-)/polyvinyl alcohol precursor fibers with uniform diameters were prepared through electrospinning.Nickel-based composite nanoalloys containing Ni,Cu,and S were prepared through heat treatment...Ni^(2+)/Cu^(2+)/SO_(4)^(2-)/polyvinyl alcohol precursor fibers with uniform diameters were prepared through electrospinning.Nickel-based composite nanoalloys containing Ni,Cu,and S were prepared through heat treatment in an Ar atmosphere.The experimental results show that the main components of the prepared nanoalloys are NiCu,Ni_(3)S_(2),Ni,and C.The nanoalloys exhibit fine grain sizes about 200-500 nm,which can increase with increasing heat treatment temperature.Electrochemical test results show that the nickel sulfidemodified NiCu nanoalloy composites exhibit excellent oxygen evolution reaction properties,and the oxygen evolution reaction properties gradually improve with the increasing heat treatment temperature.The sample prepared at 1 000℃ for 40 min show a low overpotential of 423 mV and a small Tafel slope of 134 mV·dec^(-1) at a current density of 10 mA·cm^(-2).展开更多
Designing low-cost, highly efficient, and stable bifunctional electrocatalysts for both hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) is of vital significance for water splitting.Herein, thre...Designing low-cost, highly efficient, and stable bifunctional electrocatalysts for both hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) is of vital significance for water splitting.Herein, three-dimensional lily-like CoNi_2S_4 supported on nickel foam(CoNi_2S_4/Ni) has been fabricated by sulfuration of the Co–Ni precursor. As expected, CoNi_2S_4/Ni possesses such outstanding electrocatalytic properties that it requires an overpotential of only 54 mV at 10 mA cm^(-2) and 328 mV at 100 mA cm^(-2) for HER and OER, respectively. Furthermore, by utilizing the CoNi_2S_4/Ni electrodes as bifunctional electrocatalysts for overall water splitting, a current density of 10 mA cm^(-2) can be obtained at a voltage of only 1.56 V.展开更多
The efficacy of the oxygen reduction reaction(ORR) in fuel cells can be significantly enhanced by optimizing cobalt-based catalysts,which provide a more stable alternative to iron-based catalysts.However,their perform...The efficacy of the oxygen reduction reaction(ORR) in fuel cells can be significantly enhanced by optimizing cobalt-based catalysts,which provide a more stable alternative to iron-based catalysts.However,their performance is often impeded by weak adsorption of oxygen species,leading to a 2e^(-)pathway that negatively affects fuel cell discharge efficiency.Here,we engineered a high-density cobalt active center catalyst,coordinated with nitrogen and sulfur atoms on a porous carbon substrate.Both experimental and theoretical analyses highlighted the role of sulfur atoms as electron donors,disrupting the charge symmetry of the original Co active center and promoting enhanced interaction with Co 3d orbitals.This modification improves the adsorption of oxygen and reaction intermediates during ORR,significantly reducing the production of hydrogen peroxide(H_(2)O_(2)).Remarkably,the optimized catalyst demonstrated superior fuel cell performance,with peak power densities of 1.32 W cm^(-2) in oxygen and 0.61 W cm^(-2) in air environments,respectively.A significant decrease in H_(2)O_(2) by-product accumulation was observed during the reaction process,reducing catalyst and membrane damage and consequently improving fuel cell durability.This study emphasizes the critical role of coordination symmetry in Co/N/C catalysts and proposes an effective strategy to enhance fuel cell performance.展开更多
The development of efficient catalytic electrode toward oxygen reduction reaction(ORR)is still a great challenge for the wide use of zinc–air batteries.Herein,Co_(2)N nanoparticles(NPs)anchored on N-doped carbon from...The development of efficient catalytic electrode toward oxygen reduction reaction(ORR)is still a great challenge for the wide use of zinc–air batteries.Herein,Co_(2)N nanoparticles(NPs)anchored on N-doped carbon from cattail were verified with excellent catalytic performances for ORR.The onset and half-wave potentials over the optimal catalyst reach to 0.96 V and 0.84 V,respectively.Current retention rates of 96.8%after 22-h test and 98.8%after running 1600 s were obtained in 1 M methanol solution.Density functional theory simulation proposes an apparently increased electronic states of Co_(2)N in N-doped carbon layer close to the Fermi level.Higher charge density,favorable adsorption,and charge transfer of intermediates originate from the coexistence of Co_(2)N NPs and N atoms in carbon skeleton.The superior catalytic activity of composites also was confirmed in zinc–air batteries.This novel catalytic property and controllable preparation approach of Co_(2)Ncarbon composites provide a promising avenue to fabricate metal-containing catalytically active carbon from biomass.展开更多
Strategy of anchoring alloy nanoparticles made up of the efficient catalytic element(e.g.,Ni,Fe)on dodecyl sulfate(DS^(-))-intercalated NiFe layered double hydroxides(DS^(-)-NiFe LDH)obtained by a convenient one-step ...Strategy of anchoring alloy nanoparticles made up of the efficient catalytic element(e.g.,Ni,Fe)on dodecyl sulfate(DS^(-))-intercalated NiFe layered double hydroxides(DS^(-)-NiFe LDH)obtained by a convenient one-step hydrothermal coprecipitation method for essentially enhancing oxygen evolution reaction(OER)performance was proposed.The results of structural characterization indicate Pt_(2)FeNi alloy nanoparticles evenly distribute on the surface of DS^(-)-NiFe LDH.The sizes of the Pt_(2)FeNi nanoparticles,closely related to their OER performance,could be wellcontrolled by adjusting the amount of H;PtCl;addition.The composite structure of as-prepared product was stable during processes of synthesis,exfoliation,self-assembly,and subsequent electrocatalytic OER.Rigorous electrochemical test proving the contributing catalytic active sites was located at the interface between Pt_(2)FeNi and DS^(-)-NiFe LDH,and the Ni and Fe were the major active elements while O atoms are adsorption sites.The formation of Pt_(2)FeNi nanoparticles could greatly prompt the reduction of Tafel slope.The best-performing Pt_(2)FeNi/DS^(-)-NiFe LDH with a Pt content of 0.98 wt%achieved low overpotential of 204 mV at 10 mA cm^(-2)and 262 mV at 50 mA cm^(-2).This work provides a convenient and effective strategy to create additional active sites for enhancing OER performance of NiFe LDH and make contribution to its wide application.展开更多
Development of high efficient and stable water oxidation catalysts is essential for the realization of industrial water-splitting systems. Herein, a novel approach involving an in-situ transformation of Co(OH)2 nanosh...Development of high efficient and stable water oxidation catalysts is essential for the realization of industrial water-splitting systems. Herein, a novel approach involving an in-situ transformation of Co(OH)2 nanosheets into NH4 CoPO4·H2 O nanoplates on Co foil is reported. As a 3 D self-supported oxygen revolution reaction(OER) electrocatalyst, the as-prepared NH4 CoPO4·H2 O/Co exhibits remarkable catalytic activity and exceptional stability. Specifically, it can deliver a current density of 10 m A cm^(-2) at a quite low overpotential of 254 m V with a small Tafel slope of 64.4 m V dec-1 in alkaline electrolyte. Through experimental study and theoretical analysis, the excellent OER performance can be attributed to enriched exposed active sites, favorable electron/proton transfer and mass transport, and its unique asymmetric local atomic and electronic structure. Thus, this present research not only provides a practicable in-situ transformation strategy to design 3 D self-supported electrocatalysts, but also enlightens a new way of developing transition-metal phosphates for efficient and stable water oxidation at atomic level.展开更多
Ru@RuO2 core-shell nanorods were successfully synthesized by heat-treating Ru nanorods with air oxidation through an accurate control of the temperature and time. The structure, composition, dimension, and adsorption ...Ru@RuO2 core-shell nanorods were successfully synthesized by heat-treating Ru nanorods with air oxidation through an accurate control of the temperature and time. The structure, composition, dimension, and adsorption property of the core-shell nanorods were well characterized with XRD and TEM. The catalytic activity and stability were electrochemically evaluated with a rotating disk electrode, a rotating ring-disk electrode, and chronopotentiometric methods. The Ru@RuO2 nanorods reveal excellent bifunctional catalytic activity and robust stability for both oxygen evolution reaction(OER) and hydrogen evolution reaction(HER). The overpotentials for OER and HER are 320 m V and 137 m V at the current density of10 m A cm-2, respectively. The catalytic activity of Ru@RuO2 nanorods for OER is 6.5 times higher than that of the state-of-the-art catalyst IrO2 according to the catalytic current density measured at 1.60 V(versus RHE).The catalytic activity of Ru@RuO2 nanorods for HER is comparable to 40%Pt/C by comparing the catalytic current densities at à0.2 V.展开更多
Magneli phase titanium sub-oxide conductive ceramic Tin O2n-1 was used as the support for Pt due to its excellent resistance to electrochemical oxidation, and Pt/Tin O2n-1 composites were prepared by the impregnation-...Magneli phase titanium sub-oxide conductive ceramic Tin O2n-1 was used as the support for Pt due to its excellent resistance to electrochemical oxidation, and Pt/Tin O2n-1 composites were prepared by the impregnation-reduction method. The electrochemical stability of Tin O2n-1 was investigated and the results show almost no change in the redox region after oxidation for 20 h at 1.2 V(vs NHE) in 0.5 mol/L H2SO4 aqueous solution. The catalytic activity and stability of the Pt/Tin O2n-1 toward the oxygen reduction reaction(ORR) in 0.5 mol/L H2SO4 solution were investigated through the accelerated aging tests(AAT), and the morphology of the catalysts before and after the AAT was observed by transmission electron microscopy. At the potential of 0.55 V(vs SCE), the specific kinetic current density of the ORR on the Pt/Tin O2n-1 is about 1.5 times that of the Pt/C. The LSV curves for the Pt/C shift negatively obviously with the half-wave potential shifting about 0.02 V after 8000 cycles AAT, while no obvious change takes place for the LSV curves for the Pt/Tin O2n-1. The Pt particles supported on the carbon aggregate obviously, while the morphology of the Pt supported on Tin O2n-1 remains almost unchanged, which contributes to the electrochemical surface area loss of Pt/C being about 2times that of the Pt/Tin O2n-1. The superior catalytic stability of Pt/Tin O2n-1 toward the ORR could be attributed to the excellent stability of the Tin O2n-1 and the electronic interaction between the metals and the support.展开更多
Water splitting is important to the conversion and storage of renewable energy,but slow kinetics of the oxygen evolution reaction(OER)greatly limits its utility.Here,under visible light illumination,the p-n WO_(3)/SnS...Water splitting is important to the conversion and storage of renewable energy,but slow kinetics of the oxygen evolution reaction(OER)greatly limits its utility.Here,under visible light illumination,the p-n WO_(3)/SnSe_(2)(WS)heterojunction significantly activates OER catalysis of CoFe-layered double hydroxide(CF)/carbon nanotubes(CNTs).Specifically,the catalyst achieves an overpotential of 224 mV at 10 mA cm^(-2)and a small Tafel slope of 47 mV dec^(-1),superior to RuO_(2)and most previously reported transition metal-based OER catalysts.The p-n WS heterojunction shows strong light absorption to produce photogenerated carriers.The photogenerated holes are trapped by CF to suppresses the charge recombination and facilitate charge transfer,which accelerates OER kinetics and boost the activity for the OER.This work highlights the possibility of using heterojunctions to activate OER catalysis and advances the design of energy-efficient catalysts for water oxidation systems using solar energy.展开更多
Rational design of oxygen evolution reaction(OER)catalysts at low cost would greatly benefit the economy.Taking advantage of earth-abundant elements Si,Co and Ni,we produce a unique-structure where cobalt-nickel silic...Rational design of oxygen evolution reaction(OER)catalysts at low cost would greatly benefit the economy.Taking advantage of earth-abundant elements Si,Co and Ni,we produce a unique-structure where cobalt-nickel silicate hydroxide[Co_(2.5)Ni_(0.5)Si_(2)O_(5)(OH)_(4)]is vertically grown on a reduced graphene oxide(rGO)support(CNS@rGO).This is developed as a low-cost and prospective OER catalyst.Compared to cobalt or nickel silicate hydroxide@rGO(CS@rGO and NS@rGO,respectively)nanoarrays,the bimetal CNS@rGO nanoarray exhibits impressive OER performance with an overpotential of 307 mV@10 mA cm^(-2).This value is higher than that of CS@rGO and NS@rGO.The CNS@rGO nanoarray has an overpotential of 446 mV@100 mA cm^(-2),about 1.4 times that of the commercial RuO_(2)electrocatalyst.The achieved OER activity is superior to the state-of-the-art metal oxides/hydroxides and their derivatives.The vertically grown nanostructure and optimized metal-support electronic interactions play an indispensable role for OER performance improvement,including a fast electron transfer pathway,short proton/electron diffusion distance,more active metal centers,as well as optimized dualatomic electron density.Taking advantage of interlay chemical regulation and the in-situ growth method,the advanced-structural CNS@rGO nanoarrays provide a new horizon to the rational and flexible design of efficient and promising OER electrocatalysts.展开更多
基金supported by the National Natural Science Foundation of China (12241502,52002367)the Fundamental Research Funds for the Central Universities (20720220010)the National Key Research and Development Program of China (2019YFA0405602)。
文摘Spinel metal oxides containing Mn,Co,or Fe(AB_(2)O_(4),A/B=Mn/Fe/Co)are one of the most promising nonPt electrocatalysts for oxygen reduction reaction(ORR)in alkaline conditions.However,the low conductivity of metal oxides and the poor intrinsic activities of transition metal sites lead to unsatisfactory ORR performance.In this study,eutectic molten salt(EMS)treatment is employed to reconstruct the atomic arrangement of MnFe_(2)O_(4)electrocatalyst as a prototype for enhancing ORR performance.Comprehensive analyses by using XAFS,soft XAS,XPS,and electrochemical methods reveal that the EMS treatment reduces the oxygen vacancies and spinel inverse in MnFe_(2)O_(4)effectively,which improves the electric conductivity and increases the population of more catalytically active Mn^(2+)sites with tetrahedral coordination.Moreover,the enhanced Mn-O interaction after EMS treatment is conducive to the adsorption and activation of O_(2),which promotes the first electron transfer step(generally considered as the ratedetermining step)of the ORR process.As a result,the EMS treated MnFe_(2)O_(4)catalyst delivers a positive shift of 40 mV in the ORR half-wave potential and a two-fold enhanced mass/specific activity.This work provides a convenient approach to manipulate the atomic architecture and local electronic structure of spinel oxides as ORR electrocatalysts and a comprehensive understanding of the structureperformance relationship from the molecular/atomic scale.
基金financially supported by the National Natural Science Foundation of China(Grants 52072165,52070092,51662031)。
文摘Oxygen vacancy plays vital roles in regulating the electronic and charge distribution of the oxygen deficient materials.Herein,abundant oxygen vacancies are created during assembling the two-dimensional(2D)ultra-thin Bi_(2)MoO_(6) nanoflakes into three dimensional(3D)Bi_(2)MoO_(6) nanospheres,resulting in significantly improved performance for photocatalytical conversion of CO_(2) into liquid hydrocarbons.The increased performance is contributed by two primary sites,namely the abundant oxygen vacancy and the exposed molybdenum(Mo)atom induced by oxygen-migration,as revealed by the theoretical calculation.The oxygen vacancy(Ov)and uncovered Mo atom serving as dual binding sites for trapping CO_(2) molecules render the synchronous fixation-reduction process,resulting in the decline of activation energy for CO_(2) reduction from 2.15 eV on bulk Bi_(2)MoO_(6) to 1.42 eV on Ov-rich Bi_(2)MoO_(6).Such a striking decrease in the activation energy induces the efficient selective generation of liquid hydrocarbons,especially the methanol(C_(2)H_(5) OH)and ethanol(CH_(3) OH).The yields of CH_(3) OH and C_(2)H_(5) OH over the optimal Ov-Bi_(2)MoO_(6) is high up to 106.5 and 10.3μmol g^(-1) respectively,greatly outperforming that on the Bulk-Bi_(2)MoO_(6).
基金financial support from the National Natural Science Foundation of China (52203070)the Open Fund of State Key Laboratory of New Textile Materials and Advanced Processing Technologies (FZ2022005)+2 种基金the Open Fund of Hubei Key Laboratory of Biomass Fiber and Ecological Dyeing and Finishing (STRZ202203)the financial support provided by the China Scholarship Council (CSC)Visiting Scholar Programfinancial support from Institute for Sustainability,Energy and Resources,The University of Adelaide,Future Making Fellowship,Australia。
文摘The incorporation of partial A-site substitution in perovskite oxides represents a promising strategy for precisely controlling the electronic configuration and enhancing its intrinsic catalytic activity.Conventional methods for A-site substitution typically involve prolonged high-temperature processes.While these processes promote the development of unique nanostructures with highly exposed active sites,they often result in the uncontrolled configuration of introduced elements.Herein,we present a novel approach for synthesizing two-dimensional(2D)porous GdFeO_(3) perovskite with A-site strontium(Sr)substitution utilizing microwave shock method.This technique enables precise control of the Sr content and simultaneous construction of 2D porous structures in one step,capitalizing on the advantages of rapid heating and cooling(temperature~1100 K,rate~70 K s^(-1)).The active sites of this oxygen-rich defect structure can be clearly revealed through the simulation of the electronic configuration and the comprehensive analysis of the crystal structure.For electrocatalytic oxygen evolution reaction application,the synthesized 2D porous Gd_(0.8)Sr_(0.2)FeO_(3) electrocatalyst exhibits an exceptional overpotential of 294 mV at a current density of 10 mA cm^(-2)and a small Tafel slope of 55.85 mV dec^(-1)in alkaline electrolytes.This study offers a fresh perspective on designing crystal configurations and the construction of nanostructures in perovskite.
基金supported by the National Key Research and Development Program of China(2021YFB4001301)the Science and Technology Commission of Shanghai Municipality(21DZ1208600)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(SL2021ZD105)。
文摘The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction(ORR)compared to the disordered atomic structures in ordinary solid-solution alloy NPs.Accordingly,through a facile and scalable synthetic method,a series of carbon-supported ultrafine Pt_3Co_(x)Mn_(1-x)ternary INPs are prepared in this work,which possess the"skin-like"ultrathin Pt shells,the ordered L1_(2) atomic structure,and the high-even dispersion on supports(L1_(2)-Pt_3Co_(x)Mn_(1-x)/~SPt INPs/C).Electrochemical results present that the composition-optimized L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C exhibits the highest electrocata lytic activity among the series,which are also much better than those of the pristine ultrafine Pt/C.Besides,it also has a greatly enhanced electrochemical stability.In addition,the effects of annealing temperature and time are further investigated.More importantly,such superior ORR electrocatalytic performance of L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C are also well demonstrated in practical fuel cells.Physicochemical characterization analyses further reveal the major origins of the greatly enhanced ORR electrocata lytic performance:the Pt-Co-Mn alloy-induced geometric and ligand effects as well as the extremely high L1_(2) atomic-ordering degree.This work not only successfully develops a highly active and stable ordered ternary intermetallic ORR electrocatalyst,but also elucidates the corresponding"structure-function"relationship,which can be further applied in designing other intermetallic(electro)catalysts.
文摘Introducing catalytically-active Fe and N into carbon materials results in promising FeNC catalysts for oxygen reduction reaction. However, the doped Fe and N species are frequently subject to heavy loss in a traditional carbonization process owing to Fe agglomeration and evaporation of N-contained small molecules. Besides, pyrolysis may make materials sintering which embeds a large number of active sites in the bulk phase and impedes direct exposure of reactive centers to the reactants. We here report that when calcinations, the addition of ZnCl2, an ordinary salt with very wide melting temperature range well covering the carbonization process of the precursor iron porphyrin, can significantly enhance the doping level of the active species and simultaneously create highly porous structures for FeNC catalysts. The obtained FeNC demonstrates ultrahigh catalytic activities even significantly better than Pt/C in oxygen reduction reaction.
基金financial supports from the Youth Innovation Fund of Dalian Institute of Chemical Physics (DICP I202126)the Strategic Priority Research Program of Chinese Academy of Sciences (XDB17020400)。
文摘The oxygen evolution reaction (OER) dominates the efficiency of electrocatalytic water splitting owing to its sluggish kinetics.Perovskite oxides (ABO_(3)) have emerged as promising candidates to accelerate the OER process owing to their high intrinsic activities and tailorable properties.Fe ions in perovskite oxides have been proved to be a highly catalytic element for OER,while some Fe-based perovskites such as SrTi_(0.8)Fe_(0.2)O_(3-δ)(STF) and La_(0.66)Ti_(0.8)Fe_(0.2)O_(3-δ)(LTF) exhibit inferior OER activity.Yet the essential reason is still unclear and the effective method to promote the activity of such perovskite is also lacking.Herein,an in-situ exsolution strategy was proposed to boost the OER by migrating Fe from the bulk to the surface.Significantly enhanced OER activity was achieved on STF and LTF perovskites with surfacedecorated oxygen vacancies and Fe nanoparticles.In addition,theoretical calculation confirmed that the oxygen vacancies and Fe nanoparticle on surface could lower the overpotential of OER by facilitating the adsorption of OH^(-).From this study,migration of the active elements in perovskite is found to be an effective strategy to increase the quantity and activity of active sites,providing new insights and understanding for designing efficient OER catalysts.
文摘IrO2 and IrRuOx(Ir:Ru 60:40 at%),supported by 50 wt%onto titania nanotubes(TNTs)and(3 at%Nb)Nb-doped titania nanotubes(Nb-TNTs),as electrocatalysts for the oxygen evolution reaction(OER),were synthesized and characterized by means of structural,surface analytical and electrochemical techniques.Nb doping of titania significantly increased the surface area of the support from 145(TNTs)to 260 m2g-1(Nb-TNTs),which was significantly higher than those of the Nb-doped titania supports previously reported in the literature.The surface analytical techniques showed good dispersion of the catalysts onto the supports.The X-ray photoelectron spectroscopy analyses showed that Nb was mainly in the form of Nb(IV)species,the suitable form to behave as a donor introducing free electrons to the conduction band of titania.The redox transitions of the cyclic voltammograms,in agreement with the XPS results,were found to be reversible.Despite the supported materials presented bigger crystallite sizes than the unsupported ones,the total number of active sites of the former was also higher due to their better catalyst dispersion.Considering the outer and the total charges of the cyclic voltammograms in the range 0.1–1.4 V,stability and electrode potentials at given current densities,the preferred catalyst was Ir O2 supported on the Nb-TNTs.The electrode potentials corresponding to given current densities were between the smallest ones given in the literature despite the small oxide loading used in this work and its Nb doping,thus making the Nb-TNTs-supported IrO2 catalyst a promising candidate for the OER.The good dispersion of IrO2,high specific surface area of the Nb-doped supports,accessibility of the electroactive centers,increased stability due to Nb doping and electron donor properties of the Nb(IV)oxide species were considered the main reasons for its good performance.
基金This work was financially supported by the Australian Research Council(ARC)through Future Fellowship grants(FT180100387 and FT160100281)Discovery Projects(DP200103568,DP210100472,and DP200102546)+1 种基金WL thanks the support of the Science and Technology Commission of Shanghai Municipality(19520713200)Open access funding provided by Shanghai Jiao Tong University
文摘Oxygen vacancies(Vo)in electrocatalysts are closely correlated with the hydrogen evo-lution reaction(HER)activity.The role of vacancy defects and the effect of their concentration,how-ever,yet remains unclear.Herein,Bi2O3,an unfavorable electrocata-lyst for the HER due to a less than ideal hydrogen adsorption Gibbs free energy(ΔGH*),is utilized as a perfect model to explore the func-tion of Vo on HER performance.Through a facile plasma irradia-tion strategy,Bi2O3 nanosheets with different Vo concentrations are fabricated to evaluate the influence of defects on the HER process.Unexpectedly,while the generated oxygen vacancies contribute to the enhanced HER performance,higher Vo concentrations beyond a saturation value result in a significant drop in HER activity.By tunning the Vo concentration in the Bi_(2)O_(3)nanosheets via adjusting the treatment time,the Bi2O3 catalyst with an optimized oxygen vacancy concentration and detectable charge carrier concentration of 1.52×10^(24)cm^(−3)demonstrates enhanced HER performance with an overpotential of 174.2 mV to reach 10 mA cm^(−2),a Tafel slope of 80 mV dec−1,and an exchange current density of 316 mA cm−2 in an alkaline solution,which approaches the top-tier activity among Bi-based HER electrocatalysts.Density-functional theory calculations confirm the preferred adsorption of H*onto Bi2O3 as a function of oxygen chemical potential(ΔμO)and oxygen partial potential(PO2)and reveal that high Vo concentrations result in excessive stability of adsorbed hydrogen and hence the inferior HER activity.This study reveals the oxygen vacancy concentration-HER catalytic activity relationship and provides insights into activating catalytically inert materials into highly efficient electrocatalysts.
基金the financial support from the Key Research and Development of Ministry of Science and Technology of China(No.2018YFE0202600)National Natural Science Foundation of China(No.11947070,No.51902220,No.51572183)+1 种基金Materials Science&Engineering of Zhejiang Province First-Class Discipline(No.P61021902)Cultivating Program of Taizhou University(No.2018PY050)。
文摘Improving the OER activity of noble metal-based materials is of profound importance to minimize the usage of noble metals and lower the cost.Here,we report considerable improvement on the catalytic activity of RuO_(2) particles for OER in both alkali and acid environments.The RuO_(2) nanoparticles were treated with a method of pulse laser ablation.Numerous Ru and RuO_(2) clusters were generated at the surface of RuO_(2) nanoparticles after the laser ablation,forming a lychee-shaped morphology.The larger pulse energy RuO_(2) nanoparticles are treated with,the better the OER activity can be.DFT calculations shows that the surface tension induced by the lychee-shaped morphology benefits the OER performance.Our best sample gives an overpotential of 172 mV(at 10 mA cm^(-2))and a Tafel slope of 53.5 mV dec^(-1) in KOH,while an overpotential of 219 mV and a Tafel slope of 44.9 mV dec^(-1) in H_(2)SO_(4),which are of topclass results.This work may inspire a new way to develop high-performance electrocatalysts for OER.
基金Funded by the Doctoral Fund of Chengdu University(No.2081919131)the Sichuan Science and Technology Program(No.2023YFG0229)。
文摘Ni^(2+)/Cu^(2+)/SO_(4)^(2-)/polyvinyl alcohol precursor fibers with uniform diameters were prepared through electrospinning.Nickel-based composite nanoalloys containing Ni,Cu,and S were prepared through heat treatment in an Ar atmosphere.The experimental results show that the main components of the prepared nanoalloys are NiCu,Ni_(3)S_(2),Ni,and C.The nanoalloys exhibit fine grain sizes about 200-500 nm,which can increase with increasing heat treatment temperature.Electrochemical test results show that the nickel sulfidemodified NiCu nanoalloy composites exhibit excellent oxygen evolution reaction properties,and the oxygen evolution reaction properties gradually improve with the increasing heat treatment temperature.The sample prepared at 1 000℃ for 40 min show a low overpotential of 423 mV and a small Tafel slope of 134 mV·dec^(-1) at a current density of 10 mA·cm^(-2).
基金supported by the National Natural Science Foundation of China(21376105,21576113)~~
文摘Designing low-cost, highly efficient, and stable bifunctional electrocatalysts for both hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) is of vital significance for water splitting.Herein, three-dimensional lily-like CoNi_2S_4 supported on nickel foam(CoNi_2S_4/Ni) has been fabricated by sulfuration of the Co–Ni precursor. As expected, CoNi_2S_4/Ni possesses such outstanding electrocatalytic properties that it requires an overpotential of only 54 mV at 10 mA cm^(-2) and 328 mV at 100 mA cm^(-2) for HER and OER, respectively. Furthermore, by utilizing the CoNi_2S_4/Ni electrodes as bifunctional electrocatalysts for overall water splitting, a current density of 10 mA cm^(-2) can be obtained at a voltage of only 1.56 V.
基金financially National Natural Science Foundation of China (22288102, 22172134, U1932201, U2032202)Science and Technology Planning Project of Fujian Province (2022H0002)support from the EPSRC (EP/W03784X/1)。
文摘The efficacy of the oxygen reduction reaction(ORR) in fuel cells can be significantly enhanced by optimizing cobalt-based catalysts,which provide a more stable alternative to iron-based catalysts.However,their performance is often impeded by weak adsorption of oxygen species,leading to a 2e^(-)pathway that negatively affects fuel cell discharge efficiency.Here,we engineered a high-density cobalt active center catalyst,coordinated with nitrogen and sulfur atoms on a porous carbon substrate.Both experimental and theoretical analyses highlighted the role of sulfur atoms as electron donors,disrupting the charge symmetry of the original Co active center and promoting enhanced interaction with Co 3d orbitals.This modification improves the adsorption of oxygen and reaction intermediates during ORR,significantly reducing the production of hydrogen peroxide(H_(2)O_(2)).Remarkably,the optimized catalyst demonstrated superior fuel cell performance,with peak power densities of 1.32 W cm^(-2) in oxygen and 0.61 W cm^(-2) in air environments,respectively.A significant decrease in H_(2)O_(2) by-product accumulation was observed during the reaction process,reducing catalyst and membrane damage and consequently improving fuel cell durability.This study emphasizes the critical role of coordination symmetry in Co/N/C catalysts and proposes an effective strategy to enhance fuel cell performance.
基金Financial supports from the National Natural Science Foundation of China(no.31901272,no.22075254)the Jiangsu Province Key Laboratory of Biomass Energy and Materials(no.JSBEM-S-201906)。
文摘The development of efficient catalytic electrode toward oxygen reduction reaction(ORR)is still a great challenge for the wide use of zinc–air batteries.Herein,Co_(2)N nanoparticles(NPs)anchored on N-doped carbon from cattail were verified with excellent catalytic performances for ORR.The onset and half-wave potentials over the optimal catalyst reach to 0.96 V and 0.84 V,respectively.Current retention rates of 96.8%after 22-h test and 98.8%after running 1600 s were obtained in 1 M methanol solution.Density functional theory simulation proposes an apparently increased electronic states of Co_(2)N in N-doped carbon layer close to the Fermi level.Higher charge density,favorable adsorption,and charge transfer of intermediates originate from the coexistence of Co_(2)N NPs and N atoms in carbon skeleton.The superior catalytic activity of composites also was confirmed in zinc–air batteries.This novel catalytic property and controllable preparation approach of Co_(2)Ncarbon composites provide a promising avenue to fabricate metal-containing catalytically active carbon from biomass.
基金the financial support by the National Natural Science Foundation of China(51874357,51872333,U20A20123)Innovative Research Group of Hunan Provincial Natural Science Foundation of China(2019JJ10006)support from Shenghua Scholar Program of Central South University.R.M.acknowledges support from JSPS KAKENNHI(18H03869)。
文摘Strategy of anchoring alloy nanoparticles made up of the efficient catalytic element(e.g.,Ni,Fe)on dodecyl sulfate(DS^(-))-intercalated NiFe layered double hydroxides(DS^(-)-NiFe LDH)obtained by a convenient one-step hydrothermal coprecipitation method for essentially enhancing oxygen evolution reaction(OER)performance was proposed.The results of structural characterization indicate Pt_(2)FeNi alloy nanoparticles evenly distribute on the surface of DS^(-)-NiFe LDH.The sizes of the Pt_(2)FeNi nanoparticles,closely related to their OER performance,could be wellcontrolled by adjusting the amount of H;PtCl;addition.The composite structure of as-prepared product was stable during processes of synthesis,exfoliation,self-assembly,and subsequent electrocatalytic OER.Rigorous electrochemical test proving the contributing catalytic active sites was located at the interface between Pt_(2)FeNi and DS^(-)-NiFe LDH,and the Ni and Fe were the major active elements while O atoms are adsorption sites.The formation of Pt_(2)FeNi nanoparticles could greatly prompt the reduction of Tafel slope.The best-performing Pt_(2)FeNi/DS^(-)-NiFe LDH with a Pt content of 0.98 wt%achieved low overpotential of 204 mV at 10 mA cm^(-2)and 262 mV at 50 mA cm^(-2).This work provides a convenient and effective strategy to create additional active sites for enhancing OER performance of NiFe LDH and make contribution to its wide application.
基金supported by the National Natural Science Foundation of China (51602128)the Research Foundation from University of Jinan (XKY1401, XBS1508, XBH1504)。
文摘Development of high efficient and stable water oxidation catalysts is essential for the realization of industrial water-splitting systems. Herein, a novel approach involving an in-situ transformation of Co(OH)2 nanosheets into NH4 CoPO4·H2 O nanoplates on Co foil is reported. As a 3 D self-supported oxygen revolution reaction(OER) electrocatalyst, the as-prepared NH4 CoPO4·H2 O/Co exhibits remarkable catalytic activity and exceptional stability. Specifically, it can deliver a current density of 10 m A cm^(-2) at a quite low overpotential of 254 m V with a small Tafel slope of 64.4 m V dec-1 in alkaline electrolyte. Through experimental study and theoretical analysis, the excellent OER performance can be attributed to enriched exposed active sites, favorable electron/proton transfer and mass transport, and its unique asymmetric local atomic and electronic structure. Thus, this present research not only provides a practicable in-situ transformation strategy to design 3 D self-supported electrocatalysts, but also enlightens a new way of developing transition-metal phosphates for efficient and stable water oxidation at atomic level.
基金the U.S.Department of the ArmyU.S.Army Materiel Command for supporting this work
文摘Ru@RuO2 core-shell nanorods were successfully synthesized by heat-treating Ru nanorods with air oxidation through an accurate control of the temperature and time. The structure, composition, dimension, and adsorption property of the core-shell nanorods were well characterized with XRD and TEM. The catalytic activity and stability were electrochemically evaluated with a rotating disk electrode, a rotating ring-disk electrode, and chronopotentiometric methods. The Ru@RuO2 nanorods reveal excellent bifunctional catalytic activity and robust stability for both oxygen evolution reaction(OER) and hydrogen evolution reaction(HER). The overpotentials for OER and HER are 320 m V and 137 m V at the current density of10 m A cm-2, respectively. The catalytic activity of Ru@RuO2 nanorods for OER is 6.5 times higher than that of the state-of-the-art catalyst IrO2 according to the catalytic current density measured at 1.60 V(versus RHE).The catalytic activity of Ru@RuO2 nanorods for HER is comparable to 40%Pt/C by comparing the catalytic current densities at à0.2 V.
基金Project(21406273)supported by the National Natural Science Foundation of China
文摘Magneli phase titanium sub-oxide conductive ceramic Tin O2n-1 was used as the support for Pt due to its excellent resistance to electrochemical oxidation, and Pt/Tin O2n-1 composites were prepared by the impregnation-reduction method. The electrochemical stability of Tin O2n-1 was investigated and the results show almost no change in the redox region after oxidation for 20 h at 1.2 V(vs NHE) in 0.5 mol/L H2SO4 aqueous solution. The catalytic activity and stability of the Pt/Tin O2n-1 toward the oxygen reduction reaction(ORR) in 0.5 mol/L H2SO4 solution were investigated through the accelerated aging tests(AAT), and the morphology of the catalysts before and after the AAT was observed by transmission electron microscopy. At the potential of 0.55 V(vs SCE), the specific kinetic current density of the ORR on the Pt/Tin O2n-1 is about 1.5 times that of the Pt/C. The LSV curves for the Pt/C shift negatively obviously with the half-wave potential shifting about 0.02 V after 8000 cycles AAT, while no obvious change takes place for the LSV curves for the Pt/Tin O2n-1. The Pt particles supported on the carbon aggregate obviously, while the morphology of the Pt supported on Tin O2n-1 remains almost unchanged, which contributes to the electrochemical surface area loss of Pt/C being about 2times that of the Pt/Tin O2n-1. The superior catalytic stability of Pt/Tin O2n-1 toward the ORR could be attributed to the excellent stability of the Tin O2n-1 and the electronic interaction between the metals and the support.
基金the National Natural Science Foundation of China(No.41807213)the Hydrogeo-logical Survey Project of Huangshui River(No.DD20190331).
文摘Water splitting is important to the conversion and storage of renewable energy,but slow kinetics of the oxygen evolution reaction(OER)greatly limits its utility.Here,under visible light illumination,the p-n WO_(3)/SnSe_(2)(WS)heterojunction significantly activates OER catalysis of CoFe-layered double hydroxide(CF)/carbon nanotubes(CNTs).Specifically,the catalyst achieves an overpotential of 224 mV at 10 mA cm^(-2)and a small Tafel slope of 47 mV dec^(-1),superior to RuO_(2)and most previously reported transition metal-based OER catalysts.The p-n WS heterojunction shows strong light absorption to produce photogenerated carriers.The photogenerated holes are trapped by CF to suppresses the charge recombination and facilitate charge transfer,which accelerates OER kinetics and boost the activity for the OER.This work highlights the possibility of using heterojunctions to activate OER catalysis and advances the design of energy-efficient catalysts for water oxidation systems using solar energy.
基金supported by the Fundamental Research Funds for the Central Universities(DUT21LK34)Natural Science Foundation of Liaoning Province(2020-MS-113).
文摘Rational design of oxygen evolution reaction(OER)catalysts at low cost would greatly benefit the economy.Taking advantage of earth-abundant elements Si,Co and Ni,we produce a unique-structure where cobalt-nickel silicate hydroxide[Co_(2.5)Ni_(0.5)Si_(2)O_(5)(OH)_(4)]is vertically grown on a reduced graphene oxide(rGO)support(CNS@rGO).This is developed as a low-cost and prospective OER catalyst.Compared to cobalt or nickel silicate hydroxide@rGO(CS@rGO and NS@rGO,respectively)nanoarrays,the bimetal CNS@rGO nanoarray exhibits impressive OER performance with an overpotential of 307 mV@10 mA cm^(-2).This value is higher than that of CS@rGO and NS@rGO.The CNS@rGO nanoarray has an overpotential of 446 mV@100 mA cm^(-2),about 1.4 times that of the commercial RuO_(2)electrocatalyst.The achieved OER activity is superior to the state-of-the-art metal oxides/hydroxides and their derivatives.The vertically grown nanostructure and optimized metal-support electronic interactions play an indispensable role for OER performance improvement,including a fast electron transfer pathway,short proton/electron diffusion distance,more active metal centers,as well as optimized dualatomic electron density.Taking advantage of interlay chemical regulation and the in-situ growth method,the advanced-structural CNS@rGO nanoarrays provide a new horizon to the rational and flexible design of efficient and promising OER electrocatalysts.