A new ruthenium(II) complex with two different types oftridentate ligands was synthesized, 2,2′:6′,2″-terpyridine (tpy) and 2,6-Bis((N-benzyl)aminomethyl)pyridine (bbap): [Ru(tpy)(bbap)]2+ (1). T...A new ruthenium(II) complex with two different types oftridentate ligands was synthesized, 2,2′:6′,2″-terpyridine (tpy) and 2,6-Bis((N-benzyl)aminomethyl)pyridine (bbap): [Ru(tpy)(bbap)]2+ (1). This compound was designed to form intramolecular π-π stacking interaction between tpy and substituted benzyl groups of bbap. The single-crystal X-ray diffraction analysis revealed that 1 crystallized with orthorhombic space group Aea2 and the ruthenium center has a distorted octahedral coordination geometry with fully chelated tpy and bbap ligands. Simultaneously, in the crystal structure of 1, the central part of ligating tpy was stacked and sandwiched with a pair of capped benzyl substituent groups of bbap, the nearest atomic distance being N...C = 3.28 A.展开更多
The synthesis and characterization of several hexa – coordinated Ru(II) complexes of the type [Ru(CO)(B)(L)] (B = PPh3/AsPh3/py/pip;L = di-basic tetradentate ligand derived from the condensation of isatin with diamin...The synthesis and characterization of several hexa – coordinated Ru(II) complexes of the type [Ru(CO)(B)(L)] (B = PPh3/AsPh3/py/pip;L = di-basic tetradentate ligand derived from the condensation of isatin with diamines) were reported. IR, electronic, 1H- NMR, 31P-NMR of the complexes are discussed. An octahedral geometry has been tentatively proposed for all these complexes. The new complexes have been tested for the catalytic activity in the reaction of oxidation of alcohols in the presence of N-me- thylmorpholine–N-oxide as co-oxidant. The new complexes were also exhibited antimicrobial investigations.展开更多
One solid-state electrochemiluminescence (ECL) protein biosensor based on the competing reaction and substitute reaction between protein-to-DNA aptamer and DNA-to-DNA aptamer was proposed. Additionally, the biosenso...One solid-state electrochemiluminescence (ECL) protein biosensor based on the competing reaction and substitute reaction between protein-to-DNA aptamer and DNA-to-DNA aptamer was proposed. Additionally, the biosensor was based on ECL photo-quenching effect of ferrocene (Fc) to tris(2,2-bipyridyl)ruthenium(II) (Ru(bpy)2+). It was built up by modification of Au nanoparticles (AuNPs) and Ru(bpy)32+ on one Au electrode firstly, and then self-assembly of one special double-stranded DNA (dsDNA) onto the electrode. This dsDNA was prepared by hybridization of one Fc labeled molecular beacon single-stranded DNA(ssDNA) and one anti-thrombin aptamer ssDNA. Without the target protein, this Fc-dsDNA/Ru(bpy)2+- AuNPs/Au elec- trode trigged strong ECL signal, so we called it ECL "signal on" state. When thrombin was present in the sensing solution, the protein reacted with its aptamer from the Fc-dsDNA/Ru(bpy)3^2+-AuNPs/Au electrode. Then the left molecular beacon ssDNA on the electrode recovered to its normal stem-loop structure and consequently its Fc labeler was close enough to the electrode surface to quench the ECL signal from Ru(bpy)3^2+. It was in ECL "signal off" state. We measured the decrease in ECL intensity to sense the target protein. This was one endeavour to sense protein by using un-labeling target or probe strategy, which gave higher sensitivity and selectivity due to the better combination efficiency of protein and the un-labeled aptamer. 6.25 fmo/L thrombin was detected out,展开更多
Two tri-n-butylphosphme-participated ( PBu3n) nickel (Ⅱ) complexes of 2-mercaptophenol(H2mp),i.e,Ni2Ru(mp)3(Hmp)(PBu3n)3 3 exhibiting a curved heterotrinuclear metal skeleton and its mononuclear "synthon",[...Two tri-n-butylphosphme-participated ( PBu3n) nickel (Ⅱ) complexes of 2-mercaptophenol(H2mp),i.e,Ni2Ru(mp)3(Hmp)(PBu3n)3 3 exhibiting a curved heterotrinuclear metal skeleton and its mononuclear "synthon",[HNEt3] [Ni(mp) (Hmp) (PBu3n)] 1 were synthesized and characterized by X-crystallography and 1H NMR,FAB-MS and cyclic valtammogram measurements.The nickel(Ⅱ) center in 1 has a square-planar geometry For 3,the ruthenium(Ⅲ) atom is in a distorted octahedral environment and the two mckel(Ⅱ) atoms exhibit square-planar and rare triangle-planar geometries,respectively.The Ni (1)-Ru-Ni(2 ) arrangement is severely asymmetric with the distances 0.254 and 0.394 nm,respectively,for Ni(1)-Ru and Ni(2)-Ru.The structural regularities of relevant complexes are summarized in relation to the structural as well as spectra data.展开更多
文摘A new ruthenium(II) complex with two different types oftridentate ligands was synthesized, 2,2′:6′,2″-terpyridine (tpy) and 2,6-Bis((N-benzyl)aminomethyl)pyridine (bbap): [Ru(tpy)(bbap)]2+ (1). This compound was designed to form intramolecular π-π stacking interaction between tpy and substituted benzyl groups of bbap. The single-crystal X-ray diffraction analysis revealed that 1 crystallized with orthorhombic space group Aea2 and the ruthenium center has a distorted octahedral coordination geometry with fully chelated tpy and bbap ligands. Simultaneously, in the crystal structure of 1, the central part of ligating tpy was stacked and sandwiched with a pair of capped benzyl substituent groups of bbap, the nearest atomic distance being N...C = 3.28 A.
文摘The synthesis and characterization of several hexa – coordinated Ru(II) complexes of the type [Ru(CO)(B)(L)] (B = PPh3/AsPh3/py/pip;L = di-basic tetradentate ligand derived from the condensation of isatin with diamines) were reported. IR, electronic, 1H- NMR, 31P-NMR of the complexes are discussed. An octahedral geometry has been tentatively proposed for all these complexes. The new complexes have been tested for the catalytic activity in the reaction of oxidation of alcohols in the presence of N-me- thylmorpholine–N-oxide as co-oxidant. The new complexes were also exhibited antimicrobial investigations.
文摘One solid-state electrochemiluminescence (ECL) protein biosensor based on the competing reaction and substitute reaction between protein-to-DNA aptamer and DNA-to-DNA aptamer was proposed. Additionally, the biosensor was based on ECL photo-quenching effect of ferrocene (Fc) to tris(2,2-bipyridyl)ruthenium(II) (Ru(bpy)2+). It was built up by modification of Au nanoparticles (AuNPs) and Ru(bpy)32+ on one Au electrode firstly, and then self-assembly of one special double-stranded DNA (dsDNA) onto the electrode. This dsDNA was prepared by hybridization of one Fc labeled molecular beacon single-stranded DNA(ssDNA) and one anti-thrombin aptamer ssDNA. Without the target protein, this Fc-dsDNA/Ru(bpy)2+- AuNPs/Au elec- trode trigged strong ECL signal, so we called it ECL "signal on" state. When thrombin was present in the sensing solution, the protein reacted with its aptamer from the Fc-dsDNA/Ru(bpy)3^2+-AuNPs/Au electrode. Then the left molecular beacon ssDNA on the electrode recovered to its normal stem-loop structure and consequently its Fc labeler was close enough to the electrode surface to quench the ECL signal from Ru(bpy)3^2+. It was in ECL "signal off" state. We measured the decrease in ECL intensity to sense the target protein. This was one endeavour to sense protein by using un-labeling target or probe strategy, which gave higher sensitivity and selectivity due to the better combination efficiency of protein and the un-labeled aptamer. 6.25 fmo/L thrombin was detected out,
文摘Two tri-n-butylphosphme-participated ( PBu3n) nickel (Ⅱ) complexes of 2-mercaptophenol(H2mp),i.e,Ni2Ru(mp)3(Hmp)(PBu3n)3 3 exhibiting a curved heterotrinuclear metal skeleton and its mononuclear "synthon",[HNEt3] [Ni(mp) (Hmp) (PBu3n)] 1 were synthesized and characterized by X-crystallography and 1H NMR,FAB-MS and cyclic valtammogram measurements.The nickel(Ⅱ) center in 1 has a square-planar geometry For 3,the ruthenium(Ⅲ) atom is in a distorted octahedral environment and the two mckel(Ⅱ) atoms exhibit square-planar and rare triangle-planar geometries,respectively.The Ni (1)-Ru-Ni(2 ) arrangement is severely asymmetric with the distances 0.254 and 0.394 nm,respectively,for Ni(1)-Ru and Ni(2)-Ru.The structural regularities of relevant complexes are summarized in relation to the structural as well as spectra data.