Fucoidan,a sulfate polysaccharide obtained from brown seaweed,has various bioactive properties,including anti-inflammatory,anti-cancer,anti-viral,anti-oxidant,anti-coagulant,anti-thrombotic,anti-angiogenic,and anti-He...Fucoidan,a sulfate polysaccharide obtained from brown seaweed,has various bioactive properties,including anti-inflammatory,anti-cancer,anti-viral,anti-oxidant,anti-coagulant,anti-thrombotic,anti-angiogenic,and anti-Helicobacter pylori properties.However,the effects of low-molecular-weight fucoidan(LMW-F)on melanoma cell lines and three dimensional(3D)cell culture models are not well understood.This study aimed to investigate the effects of LMW-F on A375 human melanoma cells and cryopreserved biospecimens derived from patients with advanced melanoma.Ultrasonic wave was used to fragment fucoidan derived from Fucus vesiculosus into smaller LMW-F.MTT and live/dead assays showed that LMW-F inhibited cell proliferation in both A375 cells and patientderived melanoma explants in a 3D-printed collagen scaffold.The PTEN/AKT pathway was found to be involved in the anti-melanoma effects of fucoidan.Western blot analysis revealed that LMW-F reduced the phosphorylation of Bcl-2 at Thr 56,which was associated with the prevention of anti-apoptotic activity of cancer cells.Our findings suggested that LMW-F could enhance anti-melanoma chemotherapy and improve the outcomes of patients with melanoma resistance.展开更多
Finding biomarkers for immunotherapy is an urgent issue in cancer treatment.Cellular retinoic acid-binding protein 2(CRABP2)is a controversial factor in the occurrence and development of human tumors.However,there is ...Finding biomarkers for immunotherapy is an urgent issue in cancer treatment.Cellular retinoic acid-binding protein 2(CRABP2)is a controversial factor in the occurrence and development of human tumors.However,there is limited research on the relationship between CRABP2 and immunotherapy response.This study found that negative correlations of CRABP2 and immune checkpoint markers(PD-1,PD-L1,and CTLA-4)were observed in breast invasive carcinoma(BRCA),skin cutaneous melanoma(SKCM),stomach adenocarcinoma(STAD)and testicular germ cell tumors(TGCT).In particular,in SKCM patients who were treated with PD-1 inhibitors,high levels of CRABP2 predicted poor prognosis.Additionally,CRABP2 expression was elevated in cancer-associated fibroblasts(CAFs)at the single-cell level.The expression of CRABP2 was positively correlated with markers of CAFs,such as MFAP5,PDPN,ITGA11,PDGFRα/βand THY1 in SKCM.To validate the tumor-promoting effect of CRABP2 in vivo,SKCM xenograft mice models with CRABP2 overexpression have been constructed.These models showed an increase in tumor weight and volume.Enrichment analysis indicated that CRABP2 may be involved in immunerelated pathways of SKCM,such as extracellular matrix(ECM)receptor interaction and epithelial-mesenchymal transition(EMT).The study suggests that CRABP2 may regulate immunotherapy in SKCM patients by influencing infiltration of CAFs.In conclusion,this study provides new insights into the role of CRABP2 in immunotherapy response.The findings suggest that CRABP2 may be a promising biomarker for PD-1 inhibitors in SKCM patients.Further research is needed to confirm these findings and to explore the clinical implications of CRABP2 in immunotherapy.展开更多
Colorectal cancer(CRC)stands among the top prevalent cancers worldwide and holds a prominent position as a major contributor to cancer-related mortality globally.Absent in melanoma 2(AIM2),a constituent of the interfe...Colorectal cancer(CRC)stands among the top prevalent cancers worldwide and holds a prominent position as a major contributor to cancer-related mortality globally.Absent in melanoma 2(AIM2),a constituent of the interferoninducible hematopoietic interferon-inducible nuclear antigens with 200 amino acid repeats protein family,contributes to both cancer progression and inflammasome activation.Despite this understanding,the precise biological functions and molecular mechanisms governed by AIM2 in CRC remain elusive.Consequently,this study endeavors to assess AIM2’s expression levels,explore its potential antitumor effects,elucidate associated cancer-related processes,and decipher the underlying signaling pathways in CRC.Our findings showed a reduced AIM2 expression in most CRC cell lines.Elevation of AIM2 levels suppressed CRC cell proliferation and migration,altered cell cycle by inhibiting G1/S transition,and induced cell apoptosis.Further research uncovered the participation of P38 mitogen-activated protein kinase(P38MAPK)in AIM2-mediated modulation of CRC cell apoptosis and proliferation.Altogether,our achievements distinctly underscored AIM2’s antitumor role in CRC.AIM2 overexpression inhibited proliferation and migration and induced apoptosis of CRC cells via activating P38MAPK signaling pathway,indicating AIM2 as a prospective and novel therapeutic target for CRC.展开更多
Numerous studies have characterized the critical role of circular RNAs(circRNAs)as regulatory factors in the progression of multiple cancers.However,the biological functions of circRNAs and their underlying molecular ...Numerous studies have characterized the critical role of circular RNAs(circRNAs)as regulatory factors in the progression of multiple cancers.However,the biological functions of circRNAs and their underlying molecular mechanisms in the progression of uveal melanoma(UM)remain enigmatic.In this study,we identified a novel circRNA,circ_0053943,through re-analysis of UM microarray data and quantitative RT-PCR.Circ_0053943 was found to be upregulated in UM and to promote the proliferation and metastatic ability of UM cells in both in vitro and in vivo settings.Mechanistically,circ_0053943 was observed to bind to the KH1 and KH2 domains of insulin-like growth factor 2 mRNA-binding protein 3(IGF2BP3),thereby enhancing the function of IGF2BP3 by stabilizing its target mRNA.RNA sequencing assays identified epidermal growth factor receptor(EGFR)as a target gene of circ_0053943 and IGF2BP3 at the transcriptional level.Rescue assays demonstrated that circ_0053943 exerts its biological function by stabilizing EGFR mRNA and regulating the downstream mitogen-activated protein kinase/extracellular signal-regulated kinase(MAPK/ERK)signaling pathway.Collectively,circ_0053943 may promote UM progression by stabilizing EGFR mRNA and activating the MAPK/ERK signaling pathway through the formation of a circ_0053943/IGF2BP3/EGFR RNA-protein ternary complex,thus providing a potential biomarker and therapeutic target for UM.展开更多
Dear Editor,Ferroptosis,an iron-dependent form of cell death driven by overwhelming lipid peroxidation,represents a vulnerability in cancers,and therapeutic strategies to further potentiate ferroptosis hold great pote...Dear Editor,Ferroptosis,an iron-dependent form of cell death driven by overwhelming lipid peroxidation,represents a vulnerability in cancers,and therapeutic strategies to further potentiate ferroptosis hold great potential for melanoma treatment.展开更多
基金supported by the Priority Research Centers Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology(Grant 2017R1A6A03015562 and RS-2023-00237386).
文摘Fucoidan,a sulfate polysaccharide obtained from brown seaweed,has various bioactive properties,including anti-inflammatory,anti-cancer,anti-viral,anti-oxidant,anti-coagulant,anti-thrombotic,anti-angiogenic,and anti-Helicobacter pylori properties.However,the effects of low-molecular-weight fucoidan(LMW-F)on melanoma cell lines and three dimensional(3D)cell culture models are not well understood.This study aimed to investigate the effects of LMW-F on A375 human melanoma cells and cryopreserved biospecimens derived from patients with advanced melanoma.Ultrasonic wave was used to fragment fucoidan derived from Fucus vesiculosus into smaller LMW-F.MTT and live/dead assays showed that LMW-F inhibited cell proliferation in both A375 cells and patientderived melanoma explants in a 3D-printed collagen scaffold.The PTEN/AKT pathway was found to be involved in the anti-melanoma effects of fucoidan.Western blot analysis revealed that LMW-F reduced the phosphorylation of Bcl-2 at Thr 56,which was associated with the prevention of anti-apoptotic activity of cancer cells.Our findings suggested that LMW-F could enhance anti-melanoma chemotherapy and improve the outcomes of patients with melanoma resistance.
基金supported by grants from the Natural Science Foundation of Hunan Province(2022JJ80044)the Youth Science Foundation of Xiangya Hospital(2019Q13).
文摘Finding biomarkers for immunotherapy is an urgent issue in cancer treatment.Cellular retinoic acid-binding protein 2(CRABP2)is a controversial factor in the occurrence and development of human tumors.However,there is limited research on the relationship between CRABP2 and immunotherapy response.This study found that negative correlations of CRABP2 and immune checkpoint markers(PD-1,PD-L1,and CTLA-4)were observed in breast invasive carcinoma(BRCA),skin cutaneous melanoma(SKCM),stomach adenocarcinoma(STAD)and testicular germ cell tumors(TGCT).In particular,in SKCM patients who were treated with PD-1 inhibitors,high levels of CRABP2 predicted poor prognosis.Additionally,CRABP2 expression was elevated in cancer-associated fibroblasts(CAFs)at the single-cell level.The expression of CRABP2 was positively correlated with markers of CAFs,such as MFAP5,PDPN,ITGA11,PDGFRα/βand THY1 in SKCM.To validate the tumor-promoting effect of CRABP2 in vivo,SKCM xenograft mice models with CRABP2 overexpression have been constructed.These models showed an increase in tumor weight and volume.Enrichment analysis indicated that CRABP2 may be involved in immunerelated pathways of SKCM,such as extracellular matrix(ECM)receptor interaction and epithelial-mesenchymal transition(EMT).The study suggests that CRABP2 may regulate immunotherapy in SKCM patients by influencing infiltration of CAFs.In conclusion,this study provides new insights into the role of CRABP2 in immunotherapy response.The findings suggest that CRABP2 may be a promising biomarker for PD-1 inhibitors in SKCM patients.Further research is needed to confirm these findings and to explore the clinical implications of CRABP2 in immunotherapy.
基金supported by the Gusu Medical Key Talent Project of Suzhou City of China(GSWS2020005)the New Pharmaceutics and Medical Apparatuses Project of Suzhou City of China(SLJ2021007)+3 种基金the Suzhou City Key Clinical Disease Diagnosis and Treatment Technology Special Project,China(LCZX202129)Wujiang Science and Educational Health Revitalization Fund Project,Suzhou,China(WWK202015)the Scientific Research Project of Suzhou Ninth People’s Hospital,Suzhou,China(YK202008)and Suzhou“Science and Education”Youth Science and Technology Project,Suzhou,China(KJXW2020075).
文摘Colorectal cancer(CRC)stands among the top prevalent cancers worldwide and holds a prominent position as a major contributor to cancer-related mortality globally.Absent in melanoma 2(AIM2),a constituent of the interferoninducible hematopoietic interferon-inducible nuclear antigens with 200 amino acid repeats protein family,contributes to both cancer progression and inflammasome activation.Despite this understanding,the precise biological functions and molecular mechanisms governed by AIM2 in CRC remain elusive.Consequently,this study endeavors to assess AIM2’s expression levels,explore its potential antitumor effects,elucidate associated cancer-related processes,and decipher the underlying signaling pathways in CRC.Our findings showed a reduced AIM2 expression in most CRC cell lines.Elevation of AIM2 levels suppressed CRC cell proliferation and migration,altered cell cycle by inhibiting G1/S transition,and induced cell apoptosis.Further research uncovered the participation of P38 mitogen-activated protein kinase(P38MAPK)in AIM2-mediated modulation of CRC cell apoptosis and proliferation.Altogether,our achievements distinctly underscored AIM2’s antitumor role in CRC.AIM2 overexpression inhibited proliferation and migration and induced apoptosis of CRC cells via activating P38MAPK signaling pathway,indicating AIM2 as a prospective and novel therapeutic target for CRC.
基金supported by the National Natural Science Foundation of China(Nos.82273159 and 82171838)the Jiangsu Province’s Science and Technology Project(No.BE2020722).
文摘Numerous studies have characterized the critical role of circular RNAs(circRNAs)as regulatory factors in the progression of multiple cancers.However,the biological functions of circRNAs and their underlying molecular mechanisms in the progression of uveal melanoma(UM)remain enigmatic.In this study,we identified a novel circRNA,circ_0053943,through re-analysis of UM microarray data and quantitative RT-PCR.Circ_0053943 was found to be upregulated in UM and to promote the proliferation and metastatic ability of UM cells in both in vitro and in vivo settings.Mechanistically,circ_0053943 was observed to bind to the KH1 and KH2 domains of insulin-like growth factor 2 mRNA-binding protein 3(IGF2BP3),thereby enhancing the function of IGF2BP3 by stabilizing its target mRNA.RNA sequencing assays identified epidermal growth factor receptor(EGFR)as a target gene of circ_0053943 and IGF2BP3 at the transcriptional level.Rescue assays demonstrated that circ_0053943 exerts its biological function by stabilizing EGFR mRNA and regulating the downstream mitogen-activated protein kinase/extracellular signal-regulated kinase(MAPK/ERK)signaling pathway.Collectively,circ_0053943 may promote UM progression by stabilizing EGFR mRNA and activating the MAPK/ERK signaling pathway through the formation of a circ_0053943/IGF2BP3/EGFR RNA-protein ternary complex,thus providing a potential biomarker and therapeutic target for UM.
基金This work was supported by grants from the National Natural Science Foundation of China(82103183,82102803,82272849)the Natural Science Foundation of Hunan Province(2022JJ40767,2021JJ40976)+1 种基金the Natural Science Fund for Outstanding Youths in Hunan Province(2023JJ20093)the National Key Research and Development Program(2022YFC2504700).
文摘Dear Editor,Ferroptosis,an iron-dependent form of cell death driven by overwhelming lipid peroxidation,represents a vulnerability in cancers,and therapeutic strategies to further potentiate ferroptosis hold great potential for melanoma treatment.