A new crystalline form of carboxypeptidase A (CPA) complexes withan inactivator was obtained by the method of hanging drop vapor diffusion. The inacti-’vator, 2-benzyl-3-iodo-propanoic acid (BIPA ), binds covalently ...A new crystalline form of carboxypeptidase A (CPA) complexes withan inactivator was obtained by the method of hanging drop vapor diffusion. The inacti-’vator, 2-benzyl-3-iodo-propanoic acid (BIPA ), binds covalently to an active siteresidue Glu-27O of CPA. The complex was crystallized in space group P212121 with a= 48. 8 A, b=66. 9 A, c= 96. 0 A. The complex structure was determined by molecu-lar replacement using the native CPA crystal structure as the search model. The finalcrystallographic residual is 0. 152. Except for the modification of Glu-270, the inactiva-tor exhibits normal binding mode compared with other ligand complexes of CPA. Inthe final different electron density maps (2Fo-Fc, Fo-Fc), the density of the iodo ioncould not be found while the conserved molecule remains coordinated to Zn2+ as in thenative CPA. Comparisons of complex of CPA-BIPA with the native CPA and theCPA/D-Phe complex are presented. The mechanism of inactivation of CPA was dis-cussed.展开更多
文摘A new crystalline form of carboxypeptidase A (CPA) complexes withan inactivator was obtained by the method of hanging drop vapor diffusion. The inacti-’vator, 2-benzyl-3-iodo-propanoic acid (BIPA ), binds covalently to an active siteresidue Glu-27O of CPA. The complex was crystallized in space group P212121 with a= 48. 8 A, b=66. 9 A, c= 96. 0 A. The complex structure was determined by molecu-lar replacement using the native CPA crystal structure as the search model. The finalcrystallographic residual is 0. 152. Except for the modification of Glu-270, the inactiva-tor exhibits normal binding mode compared with other ligand complexes of CPA. Inthe final different electron density maps (2Fo-Fc, Fo-Fc), the density of the iodo ioncould not be found while the conserved molecule remains coordinated to Zn2+ as in thenative CPA. Comparisons of complex of CPA-BIPA with the native CPA and theCPA/D-Phe complex are presented. The mechanism of inactivation of CPA was dis-cussed.