This paper presents a novel mechanical attachment, i.e., nonlinear energy sink (NES), for suppressing the limit cycle oscillation (LCO) of an airfoil. The dynamic responses of a two-degree-of-freedom (2-DOF) air...This paper presents a novel mechanical attachment, i.e., nonlinear energy sink (NES), for suppressing the limit cycle oscillation (LCO) of an airfoil. The dynamic responses of a two-degree-of-freedom (2-DOF) airfoil coupled with an NES are studied with the harmonic balance method. Different structure parameters of the NES, i.e., mass ratio between the NES and airfoil, NES offset, NES damping, and nonlinear stiffness in the NES, are chosen for studying the effect of the LCO suppression on an aeroelastic system with a supercritical Hopf bifurcation or subcritical Hopf bifurcation, respectively. The results show that the structural parameters of the NES have different influence on the supercritical Hopf bifurcation system and the subcritical Hopf bifurcation system.展开更多
Many important vibration phenomena which simultaneously contain quadratic nonlinear stiffness and damping exist in the complicated vibrating systems under practical circumstances. In this paper, we established a 2-deg...Many important vibration phenomena which simultaneously contain quadratic nonlinear stiffness and damping exist in the complicated vibrating systems under practical circumstances. In this paper, we established a 2-degree-of-freedom (DOF) nonlinear vibration model for such a system, deduced the differential equations of motion which govern its dynamics, and worked out the solutions for the governing equations by the principle of superposition of nonlinear normal modes (NLNM) based on Shaw’s theory of invariant manifolds. We conducted numerical simulations with the established model, using superposition of nonlinear normal modes and direct numerical methods, respectively. The obtained results demonstrate the feasibility of the proposed method in that its calculated data varies in a similar tendency to that of the direct numerical solutions.展开更多
A flexible two degrees of freedom (2-DOF) steering model of multi-axlevehicle (MAV) is presented with considering the effect of frame flexibility based on the classic2-DOF model. A method to calculate the frame flexib...A flexible two degrees of freedom (2-DOF) steering model of multi-axlevehicle (MAV) is presented with considering the effect of frame flexibility based on the classic2-DOF model. A method to calculate the frame flexibility is derived by using three moments equation.The steering stability of MAV is analyzed. The steering performance of MAV is also researched infrequency domain. Simulation results show that the dynamic effects of flexible model are more severethan rigid model and the flexible effect of frame will weaken the steering stability of MAV.Different disposals of steering axles lead to different steering characteristics of MAV. Thein-phase steering mode improves the steering characteristics and stability at high speed. Theanti-phase steering mode increases the steering mobility at low vehicle speed.展开更多
Till now, there have been lots of researches on numerical simulation of vortex-induced vibration. Acceptable results have been obtained for fixed cylinders with low Reynolds number. However, for responses of 2-DOF vor...Till now, there have been lots of researches on numerical simulation of vortex-induced vibration. Acceptable results have been obtained for fixed cylinders with low Reynolds number. However, for responses of 2-DOF vortex-induced vibration with low mass ratio, the accuracy is not satisfactory, especially for the maximum amplitudes. In Jauvtis and Williamson's work, the maximum amplitude of the cylinder with low mass ratio m*=2.6 can reach as large as 1.5D to be called as the "super-upper branch", but from current literatures, few simulation results can achieve such value, even fail to capture the upper branch. Besides, it is found that the amplitude decays too fast in the lower branch with the RANS-based turbulence model. The reason is likely to be the defects of the turbulence model itself in the prediction of unsteady separated flows as well as the unreasonable setting of the numerical simulation parameters. Aiming at above issues, a modified turbulence model is proposed in this paper, and the effect of the acceleration of flow field on the response of vortex-induced vibration is studied based on OpenFOAM. By analyzing the responses of amplitude, phase and trajectory, frequency and vortex mode, it is proved that the vortex-induced vibration can be predicted accurately with the modified turbulence model under appropriate flow field acceleration.展开更多
In this paper, a study of control for an uncertain2-degree of freedom(DOF) helicopter system is given. The2-DOF helicopter is subject to input deadzone and output constraints. In order to cope with system uncertaintie...In this paper, a study of control for an uncertain2-degree of freedom(DOF) helicopter system is given. The2-DOF helicopter is subject to input deadzone and output constraints. In order to cope with system uncertainties and input deadzone, the neural network technique is introduced because of its capability in approximation. In order to update the weights of the neural network, an adaptive control method is utilized to improve the system adaptability. Furthermore, the integral barrier Lyapunov function(IBLF) is adopt in control design to guarantee the condition of output constraints and boundedness of the corresponding tracking errors. The Lyapunov direct method is applied in the control design to analyze system stability and convergence. Finally, numerical simulations are conducted to prove the feasibility and effectiveness of the proposed control based on the model of Quanser's 2-DOF helicopter.展开更多
A new type of 2-DOF(degree of freedom) magnetic levitation system for multi-DOF levitation is proposed. In this system, the force of permanent magnets are used for levitation and controlled by adjusting the reluctance...A new type of 2-DOF(degree of freedom) magnetic levitation system for multi-DOF levitation is proposed. In this system, the force of permanent magnets are used for levitation and controlled by adjusting the reluctance of the magnetic circuit. Using permanent magnets, the feature of this system is effective for saving energy and avoiding heat generation. First, the principle of the levitation system and typical reluctance control methods are described. Second, an experimental device based on the principle is introduced. Finally, the feasibility of this system is considered from linear control theory.展开更多
This paper presents the research on the laws of systematic-parameter dependent variation in the vibration amplitude of drum-brake limit cycle oscillations (LCO). We established a two-degree non-linear dynamic model to...This paper presents the research on the laws of systematic-parameter dependent variation in the vibration amplitude of drum-brake limit cycle oscillations (LCO). We established a two-degree non-linear dynamic model to describe the low-frequency vibration of the drum brake, applied the centre manifold theory to simplify the system, and obtained the LCO amplitude by calculating the normal form of the simplified system at the Hopf bifurcation point. It is indicated that when the friction coefficient is smaller than the friction coefficient at the bifurcation point, the amplitude decreases; whereas with a friction coefficient larger than the friction coefficient of bifurcation point, LCO occurs. The results suggest that it is applicable to suppress the LCO amplitude by changing systematic parameters, and thus improve the safety and ride comfort when applying brake. These findings can be applied to guiding the design of drum brakes.展开更多
Microsoft Kinect sensor has shown the research community that it's more than just an interactive gaming device, due to its multi-functional abilities and high reliability. In this work, online HIL (Hardware-in-the...Microsoft Kinect sensor has shown the research community that it's more than just an interactive gaming device, due to its multi-functional abilities and high reliability. In this work, online HIL (Hardware-in-the-Loop) experimental data are used to apply human motion imitation to a 2-degree of freedom Lego Mind storm NXT robotic arm. A model simulation of the dc motor used in this experiment is also present in this paper. The acquired input data from the Kinect sensor are processed in a closed loop PID controller with feedback from motors encoders. The applied algorithms solve the overlapping input problem, conducting a simultaneous control of both shoulder and elbow joints, and solving the overlapping input problem as well. The work in this paper is presented as a prototype to assure the applicability of the algorithms, for further development.展开更多
Based on the Jacobian matrices relating the input speeds with the output speeds of linkages, a general method, which is used for solving the singularities of planar multi-loop multi-DOF linkages, is presented. The fou...Based on the Jacobian matrices relating the input speeds with the output speeds of linkages, a general method, which is used for solving the singularities of planar multi-loop multi-DOF linkages, is presented. The four kinds of singularities of 2-DOF planar seven-bar linkages used in hybrid actuators are analyzed in detail by this method. Its five kinds of singular positions whose characteristics are discussed respectively are discovered. Three approaches are proposed on how to avoid the singular positions of planar multi-loop multi-DOF linkages. Based on the assemblability of planar single-loop N-bar chains or linkages, the geometry conditions are investigated and discovered to avoid the singular positions of the linkages. In order to versify aforementioned conclusions, a case is given in which the singular curves are plotted and simulated.展开更多
基金Project supported by the National Natural Science Foundation of China(No.11172199)the KeyProgram of Tianjin Natural Science Foundation of China(No.11JCZDJC25400)
文摘This paper presents a novel mechanical attachment, i.e., nonlinear energy sink (NES), for suppressing the limit cycle oscillation (LCO) of an airfoil. The dynamic responses of a two-degree-of-freedom (2-DOF) airfoil coupled with an NES are studied with the harmonic balance method. Different structure parameters of the NES, i.e., mass ratio between the NES and airfoil, NES offset, NES damping, and nonlinear stiffness in the NES, are chosen for studying the effect of the LCO suppression on an aeroelastic system with a supercritical Hopf bifurcation or subcritical Hopf bifurcation, respectively. The results show that the structural parameters of the NES have different influence on the supercritical Hopf bifurcation system and the subcritical Hopf bifurcation system.
基金Funded by the National Science Foundation of China (No. 50075029).
文摘Many important vibration phenomena which simultaneously contain quadratic nonlinear stiffness and damping exist in the complicated vibrating systems under practical circumstances. In this paper, we established a 2-degree-of-freedom (DOF) nonlinear vibration model for such a system, deduced the differential equations of motion which govern its dynamics, and worked out the solutions for the governing equations by the principle of superposition of nonlinear normal modes (NLNM) based on Shaw’s theory of invariant manifolds. We conducted numerical simulations with the established model, using superposition of nonlinear normal modes and direct numerical methods, respectively. The obtained results demonstrate the feasibility of the proposed method in that its calculated data varies in a similar tendency to that of the direct numerical solutions.
文摘A flexible two degrees of freedom (2-DOF) steering model of multi-axlevehicle (MAV) is presented with considering the effect of frame flexibility based on the classic2-DOF model. A method to calculate the frame flexibility is derived by using three moments equation.The steering stability of MAV is analyzed. The steering performance of MAV is also researched infrequency domain. Simulation results show that the dynamic effects of flexible model are more severethan rigid model and the flexible effect of frame will weaken the steering stability of MAV.Different disposals of steering axles lead to different steering characteristics of MAV. Thein-phase steering mode improves the steering characteristics and stability at high speed. Theanti-phase steering mode increases the steering mobility at low vehicle speed.
基金financially supported by the National Natural Science Foundation of China(Grant No.51509045)
文摘Till now, there have been lots of researches on numerical simulation of vortex-induced vibration. Acceptable results have been obtained for fixed cylinders with low Reynolds number. However, for responses of 2-DOF vortex-induced vibration with low mass ratio, the accuracy is not satisfactory, especially for the maximum amplitudes. In Jauvtis and Williamson's work, the maximum amplitude of the cylinder with low mass ratio m*=2.6 can reach as large as 1.5D to be called as the "super-upper branch", but from current literatures, few simulation results can achieve such value, even fail to capture the upper branch. Besides, it is found that the amplitude decays too fast in the lower branch with the RANS-based turbulence model. The reason is likely to be the defects of the turbulence model itself in the prediction of unsteady separated flows as well as the unreasonable setting of the numerical simulation parameters. Aiming at above issues, a modified turbulence model is proposed in this paper, and the effect of the acceleration of flow field on the response of vortex-induced vibration is studied based on OpenFOAM. By analyzing the responses of amplitude, phase and trajectory, frequency and vortex mode, it is proved that the vortex-induced vibration can be predicted accurately with the modified turbulence model under appropriate flow field acceleration.
基金supported by the National Natural Science Foundation of China(61803085,61806052,U1713209)the Natural Science Foundation of Jiangsu Province of China(BK20180361)
文摘In this paper, a study of control for an uncertain2-degree of freedom(DOF) helicopter system is given. The2-DOF helicopter is subject to input deadzone and output constraints. In order to cope with system uncertainties and input deadzone, the neural network technique is introduced because of its capability in approximation. In order to update the weights of the neural network, an adaptive control method is utilized to improve the system adaptability. Furthermore, the integral barrier Lyapunov function(IBLF) is adopt in control design to guarantee the condition of output constraints and boundedness of the corresponding tracking errors. The Lyapunov direct method is applied in the control design to analyze system stability and convergence. Finally, numerical simulations are conducted to prove the feasibility and effectiveness of the proposed control based on the model of Quanser's 2-DOF helicopter.
文摘A new type of 2-DOF(degree of freedom) magnetic levitation system for multi-DOF levitation is proposed. In this system, the force of permanent magnets are used for levitation and controlled by adjusting the reluctance of the magnetic circuit. Using permanent magnets, the feature of this system is effective for saving energy and avoiding heat generation. First, the principle of the levitation system and typical reluctance control methods are described. Second, an experimental device based on the principle is introduced. Finally, the feasibility of this system is considered from linear control theory.
基金the Natural Science Foundation of China (No. 50075029)
文摘This paper presents the research on the laws of systematic-parameter dependent variation in the vibration amplitude of drum-brake limit cycle oscillations (LCO). We established a two-degree non-linear dynamic model to describe the low-frequency vibration of the drum brake, applied the centre manifold theory to simplify the system, and obtained the LCO amplitude by calculating the normal form of the simplified system at the Hopf bifurcation point. It is indicated that when the friction coefficient is smaller than the friction coefficient at the bifurcation point, the amplitude decreases; whereas with a friction coefficient larger than the friction coefficient of bifurcation point, LCO occurs. The results suggest that it is applicable to suppress the LCO amplitude by changing systematic parameters, and thus improve the safety and ride comfort when applying brake. These findings can be applied to guiding the design of drum brakes.
文摘Microsoft Kinect sensor has shown the research community that it's more than just an interactive gaming device, due to its multi-functional abilities and high reliability. In this work, online HIL (Hardware-in-the-Loop) experimental data are used to apply human motion imitation to a 2-degree of freedom Lego Mind storm NXT robotic arm. A model simulation of the dc motor used in this experiment is also present in this paper. The acquired input data from the Kinect sensor are processed in a closed loop PID controller with feedback from motors encoders. The applied algorithms solve the overlapping input problem, conducting a simultaneous control of both shoulder and elbow joints, and solving the overlapping input problem as well. The work in this paper is presented as a prototype to assure the applicability of the algorithms, for further development.
文摘Based on the Jacobian matrices relating the input speeds with the output speeds of linkages, a general method, which is used for solving the singularities of planar multi-loop multi-DOF linkages, is presented. The four kinds of singularities of 2-DOF planar seven-bar linkages used in hybrid actuators are analyzed in detail by this method. Its five kinds of singular positions whose characteristics are discussed respectively are discovered. Three approaches are proposed on how to avoid the singular positions of planar multi-loop multi-DOF linkages. Based on the assemblability of planar single-loop N-bar chains or linkages, the geometry conditions are investigated and discovered to avoid the singular positions of the linkages. In order to versify aforementioned conclusions, a case is given in which the singular curves are plotted and simulated.