A novel compound, (4,4'-Hbpy)3[NaMo8O26](4,4'-bpy)2(H2O)4 1 (bpy=bipydine), was synthesized by the hydrothermal method. Single-crystal X-ray diffraction shows that compound 1 belongs to the monoclinic system...A novel compound, (4,4'-Hbpy)3[NaMo8O26](4,4'-bpy)2(H2O)4 1 (bpy=bipydine), was synthesized by the hydrothermal method. Single-crystal X-ray diffraction shows that compound 1 belongs to the monoclinic system, space group C2/m with a=19.1921(5), b=18.6931(6), c=9.3821(3) A° β=104.8020(11)°, V=3254.22(17)A°^3 C50H51Mo8N10NaO30, Mr=2062.52, Z=2, F(000)=2016, μ=1.591 mm^-1 and Dc=2.105 g/cm^3. The final R=0.0283 and wR=0.0912 for 3118 observed reflections (I〉20(I)). Compound 1 contains the β-[Mo8O26]^4-anion, sodium ion, 4,4'-bpy and lattice crystalline water molecules. The β-[MosO26] units link the sodium ion to form a chain structure. The infinitechains of [Na(Mo8O26)]^3- blocks are surrounded by protonized 4,4'-bpy cations, 4,4'-bpy and lattice crystalline water molecules. The 2D-IR correlation spectroscopy study indicates that the stretching vibrations of Mo=O occur more preferentially due to the thermal effect. The TGA analysis shows that compound 1 has high thermal stability.展开更多
A number of useful techniques associated with two-dimensional correlation spectroscopy(2DCOS)to improve its performance and utility have been developed in the last 30years.Evolution of these 2DCOS techniques,including...A number of useful techniques associated with two-dimensional correlation spectroscopy(2DCOS)to improve its performance and utility have been developed in the last 30years.Evolution of these 2DCOS techniques,including some of the very recent developments,is reviewed with examples.Topics include merged or modified asynchronous 2Dcorrelation spectrum,two-dimensional codistribution spectroscopy(2DCDS),Pareto scaling,and null-space projection treatment of spectral dataset.展开更多
A three-dimensional (3D) Keggin-type heteropolytungstate{Zn(phen)3}3[ZnW12O40]·9H2O 1 (phen = 1,10-phenanthroline) has been synthesized through a conventional hydrothermal synthesis and was characterized by...A three-dimensional (3D) Keggin-type heteropolytungstate{Zn(phen)3}3[ZnW12O40]·9H2O 1 (phen = 1,10-phenanthroline) has been synthesized through a conventional hydrothermal synthesis and was characterized by X-ray single-crystal diffraction analysis, X-ray powder diffraction (XRD), IR, UV-DRS, thermogravimetric analysis (TGA), thermal-dependent 2D-IR correlation spectroscopy (2D-COS IR) and Raman spectrum. Crystal data for compound 1: trigonal system, space group R3 with a = b = 25.268(4), c = 17.462(5) A, ), = 120°, V= 9655(4) A3 and Z = 3. Compound 1 is allomorphic to {Co(phen)3}3[CoW12O40]·9H2O 2, which has been reported by Feng Chai et al. In compound 2, its prominent feature is that the decisive role of water molecules (O-H…O) builds a 3D supramolecular structure. However, in the structure of compound 1, the interlayer space is filled by Zn(phen)3]2+ cations which linked the layers via C-H…O hydrogen bonding interactions to construct a three-dimensional framework. Two compounds are different in weak interactions, so we identify them by Thermal-dependent 2D-COS IR. Moreover, the fluorescence of compound 1 was also described.展开更多
Liquid state methanol and ethanol under different temperatures have been investigated by FT-NIR(Fourier transform nearinfrared) spectroscopy,generalized two-dimensional(2D) correlation spectroscopy,and PCA(principal c...Liquid state methanol and ethanol under different temperatures have been investigated by FT-NIR(Fourier transform nearinfrared) spectroscopy,generalized two-dimensional(2D) correlation spectroscopy,and PCA(principal component analysis) . First,the FT-NIR spectra were measured over a temperature range of 30-64(or 30-71) °C,and then the 2D correlation spectra were computed.Combining near-infrared spectroscopy,generalized 2D correlation spectroscopy,and references,we analyzed the molecular structures(especially the hydrogen bond) of methanol and ethanol,and performed the NIR band assignments. The PCA method was employed to verify the results of the 2D analysis.This study will be helpful to the understanding of these reagents.展开更多
The properties of wood can be improved through steam-heat treatment.There are many studies about mechanical properties of steam-heat treated wood,but very few studies are on the aspects of chemical modifications.In th...The properties of wood can be improved through steam-heat treatment.There are many studies about mechanical properties of steam-heat treated wood,but very few studies are on the aspects of chemical modifications.In this study,FT-IR spectra combined with SD-IR spectra,correlation coefficients and 2DIR spectra are employed to analyze the chemical modifications of teak[Tectona grandis L.F.) wood during steam-heat treatment under treatment temperatures from 120 ℃ to 220 ℃ at intervals of 20 ℃.Acetic acid,which is produced during steam-heat treatment,acts as a catalyst of condensation and degradation reactions of wood components.The changes of wood components are more and more intense with increasing the treatment temperature.The sensitivity of wood samples to thermal perturbation rises initially with increasing treatment temperature before falling back.The steam-heat treated wood under180℃ is the most sensitive.展开更多
Two dimensional asynchronous spectra were used to characterize coordination between carbonyl group of butanone and metal ions by using an approach proposed in our recent paper.Spectral variation of n-π^*transition b...Two dimensional asynchronous spectra were used to characterize coordination between carbonyl group of butanone and metal ions by using an approach proposed in our recent paper.Spectral variation of n-π^*transition band of carbonyl group is used to probe the coordination even if metal ions does not possess any characteristic peak in spectra.Experimental results indicate that Ca^2+ and Al^3+ show considerable ability to coordinate with the carbonyl group of butanone and bring about spectral variation of the n-π-*transition band,which is manifested by cross peaks in 2D asynchronous spectra.展开更多
Metal binding of organic ligands can definitely affect its environmental behavior in waters,while information on the binding heterogeneity with different organic ligands is still lacked till now.In this study,the bind...Metal binding of organic ligands can definitely affect its environmental behavior in waters,while information on the binding heterogeneity with different organic ligands is still lacked till now.In this study,the binding of zinc with organic matters associated with cyanobacterial blooms,including dissolved organic matters(DOM) and attached organic matters(AOM),were studied by using fluorescence quenching titration combined with two-dimensional correlation spectroscopy(2D-COS).Metal-induced fluorescent quenching was obviously observed both for DOM and AOM,indicating the formation of metal-ligand complexes.Compared with the one-dimensional spectra,2D-COS revealed the sequences of metal-ligand interaction with the following orders:276 nm 〉 232 ran for DOM and232 nm 〉 276 nm for AOM.Furthermore,the modified Stern-Volmer model showed that the binding constant(logKM) of 276 nm in DOM was higher than that of 232 nm(4.93 vs.4.51),while AOM was characterized with a high binding affinity for 232 nm(log KM:4.83).The ranks of log KM values were consistent with the sequential orders derived from 2D-COS results both for the two samples.Fluorescence quenching titration combined with 2D-COS was an effective method to characterize the metal-ligand interaction.展开更多
This paper reports the pH-induced structural changes in the surface immobilized poly(L-lysine)(PLL)film.Two-dimensional(2D) correlation analysis was applied to the Fourier transform infrared(FTIR)spectra of th...This paper reports the pH-induced structural changes in the surface immobilized poly(L-lysine)(PLL)film.Two-dimensional(2D) correlation analysis was applied to the Fourier transform infrared(FTIR)spectra of the surface-immobilized PLL film to examine the spectral changes induced by the alternations of the protonation state of the amino group in the side chain.Significant spectral changes in the FTIR spectra of the PLL film were observed between pH 7 and 8.The decrease in the protonation state of the amino group in the side chain induced spectral changes in the amino group as well as conformational changes in the alky]group in the side chain.From pH 1-8,the spectral changes in the amino and alkyl groups in the side chain occurred before those of the amide group in the main chain of the surface immobilized PLL film.展开更多
A polyoxovanadium borate [Na(H2O)]2[Na(H2O)2]2[Cu(en)2][V12B18O54(OH)6]·(H3O)2·(H2O)18 1(en = ethylenediamine) has been hydrothermally synthesized and characterized by IR,two-dimensional infra...A polyoxovanadium borate [Na(H2O)]2[Na(H2O)2]2[Cu(en)2][V12B18O54(OH)6]·(H3O)2·(H2O)18 1(en = ethylenediamine) has been hydrothermally synthesized and characterized by IR,two-dimensional infrared(2D IR) correlation spectroscopy with magnetic and thermal perturba-tion,thermal IR spectroscopy,thermal gravimetric analysis and single-crystal X-ray diffraction.It crystallizes in triclinic,space group P with a = 12.981(3),b = 13.044(3),c = 14.208(3) ,α = 63.98(3),β = 77.17(3),γ = 14.208(3)°,V = 2001.0(8) 3,Z = 1,Mr = 2518.05,Dc = 2.090 g/cm-1,F(000) = 1255.0,Mu(mm-1) = 1.756,λ(MoKα) = 0.71073 ,R = 0.0625 and wR = 0.1952.In 1,the [V12B18O54(OH)6]8- units are connected by [Cu(en)2]2+,binuclear Na(1) and Na(2) to form a three-dimensional porous framework.展开更多
Mixed ionic electronic conductors(MIECs)have attracted increasing attention as anode materials for solid oxide fuel cells(SOFCs)and they hold great promise for lowering the operation temperature of SOFCs.However,there...Mixed ionic electronic conductors(MIECs)have attracted increasing attention as anode materials for solid oxide fuel cells(SOFCs)and they hold great promise for lowering the operation temperature of SOFCs.However,there has been a lack of understanding of the performance-limiting factors and guidelines for rational design of composite metal-MIEC electrodes.Using a newly-developed approach based on 3 D-tomography and electrochemical impedance spectroscopy,here for the first time we quantify the contribution of the dual-phase boundary(DPB)relative to the three-phase boundary(TPB)reaction pathway on real MIEC electrodes.A new design strategy is developed for Ni/gadolinium doped ceria(CGO)electrodes(a typical MIEC electrode)based on the quantitative analyses and a novel Ni/CGO fiber-matrix structure is proposed and fabricated by combining electrospinning and tape-casting methods using commercial powders.With only 11.5 vol%nickel,the designer Ni/CGO fiber-matrix electrode shows 32%and 67%lower polarization resistance than a nano-Ni impregnated CGO scaffold electrode and conventional cermet electrode respectively.The results in this paper demonstrate quantitatively using real electrode structures that enhancing DPB and hydrogen kinetics are more efficient strategies to enhance electrode performance than simply increasing TPB.展开更多
基金This work was supported by the Foundation of Education Committee of Fujian Province (K02028, JB04049), the State Key Laboratory of Structural Chemistry, and Science and Technology Foundation of Fuzhou University
文摘A novel compound, (4,4'-Hbpy)3[NaMo8O26](4,4'-bpy)2(H2O)4 1 (bpy=bipydine), was synthesized by the hydrothermal method. Single-crystal X-ray diffraction shows that compound 1 belongs to the monoclinic system, space group C2/m with a=19.1921(5), b=18.6931(6), c=9.3821(3) A° β=104.8020(11)°, V=3254.22(17)A°^3 C50H51Mo8N10NaO30, Mr=2062.52, Z=2, F(000)=2016, μ=1.591 mm^-1 and Dc=2.105 g/cm^3. The final R=0.0283 and wR=0.0912 for 3118 observed reflections (I〉20(I)). Compound 1 contains the β-[Mo8O26]^4-anion, sodium ion, 4,4'-bpy and lattice crystalline water molecules. The β-[MosO26] units link the sodium ion to form a chain structure. The infinitechains of [Na(Mo8O26)]^3- blocks are surrounded by protonized 4,4'-bpy cations, 4,4'-bpy and lattice crystalline water molecules. The 2D-IR correlation spectroscopy study indicates that the stretching vibrations of Mo=O occur more preferentially due to the thermal effect. The TGA analysis shows that compound 1 has high thermal stability.
文摘A number of useful techniques associated with two-dimensional correlation spectroscopy(2DCOS)to improve its performance and utility have been developed in the last 30years.Evolution of these 2DCOS techniques,including some of the very recent developments,is reviewed with examples.Topics include merged or modified asynchronous 2Dcorrelation spectrum,two-dimensional codistribution spectroscopy(2DCDS),Pareto scaling,and null-space projection treatment of spectral dataset.
基金supported by the NNSFC(No.21473030,1371033)Fujian Provincial Natural Science Foundation(2013J01042)the Open Fund of State Key Laboratory of Structural Chemistry(20130015)
文摘A three-dimensional (3D) Keggin-type heteropolytungstate{Zn(phen)3}3[ZnW12O40]·9H2O 1 (phen = 1,10-phenanthroline) has been synthesized through a conventional hydrothermal synthesis and was characterized by X-ray single-crystal diffraction analysis, X-ray powder diffraction (XRD), IR, UV-DRS, thermogravimetric analysis (TGA), thermal-dependent 2D-IR correlation spectroscopy (2D-COS IR) and Raman spectrum. Crystal data for compound 1: trigonal system, space group R3 with a = b = 25.268(4), c = 17.462(5) A, ), = 120°, V= 9655(4) A3 and Z = 3. Compound 1 is allomorphic to {Co(phen)3}3[CoW12O40]·9H2O 2, which has been reported by Feng Chai et al. In compound 2, its prominent feature is that the decisive role of water molecules (O-H…O) builds a 3D supramolecular structure. However, in the structure of compound 1, the interlayer space is filled by Zn(phen)3]2+ cations which linked the layers via C-H…O hydrogen bonding interactions to construct a three-dimensional framework. Two compounds are different in weak interactions, so we identify them by Thermal-dependent 2D-COS IR. Moreover, the fluorescence of compound 1 was also described.
基金supported by the Medical Scientific Research Foundation of Guangdong Province,China(B2009043)
文摘Liquid state methanol and ethanol under different temperatures have been investigated by FT-NIR(Fourier transform nearinfrared) spectroscopy,generalized two-dimensional(2D) correlation spectroscopy,and PCA(principal component analysis) . First,the FT-NIR spectra were measured over a temperature range of 30-64(or 30-71) °C,and then the 2D correlation spectra were computed.Combining near-infrared spectroscopy,generalized 2D correlation spectroscopy,and references,we analyzed the molecular structures(especially the hydrogen bond) of methanol and ethanol,and performed the NIR band assignments. The PCA method was employed to verify the results of the 2D analysis.This study will be helpful to the understanding of these reagents.
基金sponsored by the National Natural Science Foundation of China(No.31270591)Province-Academy Cooperation Project of Zhejiang Province and Chinese Academy of Forestry(No.2013SY01)
文摘The properties of wood can be improved through steam-heat treatment.There are many studies about mechanical properties of steam-heat treated wood,but very few studies are on the aspects of chemical modifications.In this study,FT-IR spectra combined with SD-IR spectra,correlation coefficients and 2DIR spectra are employed to analyze the chemical modifications of teak[Tectona grandis L.F.) wood during steam-heat treatment under treatment temperatures from 120 ℃ to 220 ℃ at intervals of 20 ℃.Acetic acid,which is produced during steam-heat treatment,acts as a catalyst of condensation and degradation reactions of wood components.The changes of wood components are more and more intense with increasing the treatment temperature.The sensitivity of wood samples to thermal perturbation rises initially with increasing treatment temperature before falling back.The steam-heat treated wood under180℃ is the most sensitive.
基金financially supported by the National Natural Science Foundation of China(No.51373003)Beijing Natural Science Foundation(No.2122059)
文摘Two dimensional asynchronous spectra were used to characterize coordination between carbonyl group of butanone and metal ions by using an approach proposed in our recent paper.Spectral variation of n-π^*transition band of carbonyl group is used to probe the coordination even if metal ions does not possess any characteristic peak in spectra.Experimental results indicate that Ca^2+ and Al^3+ show considerable ability to coordinate with the carbonyl group of butanone and bring about spectral variation of the n-π-*transition band,which is manifested by cross peaks in 2D asynchronous spectra.
基金funded by the National Natural Science Foundation of China(Nos.51479187,51209192)the China Postdoctoral Science Foundation(Nos.2014T70505+1 种基金2013M 540438)the PAPD,and the State Key Laboratory of Pollution Control and Resource Reuse Foundation(No.PCRRF13011)
文摘Metal binding of organic ligands can definitely affect its environmental behavior in waters,while information on the binding heterogeneity with different organic ligands is still lacked till now.In this study,the binding of zinc with organic matters associated with cyanobacterial blooms,including dissolved organic matters(DOM) and attached organic matters(AOM),were studied by using fluorescence quenching titration combined with two-dimensional correlation spectroscopy(2D-COS).Metal-induced fluorescent quenching was obviously observed both for DOM and AOM,indicating the formation of metal-ligand complexes.Compared with the one-dimensional spectra,2D-COS revealed the sequences of metal-ligand interaction with the following orders:276 nm 〉 232 ran for DOM and232 nm 〉 276 nm for AOM.Furthermore,the modified Stern-Volmer model showed that the binding constant(logKM) of 276 nm in DOM was higher than that of 232 nm(4.93 vs.4.51),while AOM was characterized with a high binding affinity for 232 nm(log KM:4.83).The ranks of log KM values were consistent with the sequential orders derived from 2D-COS results both for the two samples.Fluorescence quenching titration combined with 2D-COS was an effective method to characterize the metal-ligand interaction.
基金supported by Yeungnam University Research Grants in 2013a Human Resources Development Program of Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant(No.20104010100580) funded by the Korean Ministry of Knowledge Economy
文摘This paper reports the pH-induced structural changes in the surface immobilized poly(L-lysine)(PLL)film.Two-dimensional(2D) correlation analysis was applied to the Fourier transform infrared(FTIR)spectra of the surface-immobilized PLL film to examine the spectral changes induced by the alternations of the protonation state of the amino group in the side chain.Significant spectral changes in the FTIR spectra of the PLL film were observed between pH 7 and 8.The decrease in the protonation state of the amino group in the side chain induced spectral changes in the amino group as well as conformational changes in the alky]group in the side chain.From pH 1-8,the spectral changes in the amino and alkyl groups in the side chain occurred before those of the amide group in the main chain of the surface immobilized PLL film.
基金supported by the National Natural Science Foundation of China (20873021,21003020)Doctoral Fund of Ministry of Education of China (20093514120002)New Century Excellent Talent Supported Plan of Fujian Province (SXSJRC2007-21)
文摘A polyoxovanadium borate [Na(H2O)]2[Na(H2O)2]2[Cu(en)2][V12B18O54(OH)6]·(H3O)2·(H2O)18 1(en = ethylenediamine) has been hydrothermally synthesized and characterized by IR,two-dimensional infrared(2D IR) correlation spectroscopy with magnetic and thermal perturba-tion,thermal IR spectroscopy,thermal gravimetric analysis and single-crystal X-ray diffraction.It crystallizes in triclinic,space group P with a = 12.981(3),b = 13.044(3),c = 14.208(3) ,α = 63.98(3),β = 77.17(3),γ = 14.208(3)°,V = 2001.0(8) 3,Z = 1,Mr = 2518.05,Dc = 2.090 g/cm-1,F(000) = 1255.0,Mu(mm-1) = 1.756,λ(MoKα) = 0.71073 ,R = 0.0625 and wR = 0.1952.In 1,the [V12B18O54(OH)6]8- units are connected by [Cu(en)2]2+,binuclear Na(1) and Na(2) to form a three-dimensional porous framework.
基金the financial support from EPSRC(EP/P024807/1,EP/M014045/1,EP/S000933/1 and EP/N009924/1)by the EPSRC energy storage for low carbon grids project(EP/K002252/1)+3 种基金the EPSRC Joint UK-India Clean Energy center(JUICE)(EP/P003605/1)the Integrated Development of Low-Carbon Energy Systems(IDLES)project(EP/R045518/1)the Innovate UK BAFTA project,the Innovate UK for Advanced Battery Lifetime Extension(ABLE)project for funding underthe China Scholarship Council。
文摘Mixed ionic electronic conductors(MIECs)have attracted increasing attention as anode materials for solid oxide fuel cells(SOFCs)and they hold great promise for lowering the operation temperature of SOFCs.However,there has been a lack of understanding of the performance-limiting factors and guidelines for rational design of composite metal-MIEC electrodes.Using a newly-developed approach based on 3 D-tomography and electrochemical impedance spectroscopy,here for the first time we quantify the contribution of the dual-phase boundary(DPB)relative to the three-phase boundary(TPB)reaction pathway on real MIEC electrodes.A new design strategy is developed for Ni/gadolinium doped ceria(CGO)electrodes(a typical MIEC electrode)based on the quantitative analyses and a novel Ni/CGO fiber-matrix structure is proposed and fabricated by combining electrospinning and tape-casting methods using commercial powders.With only 11.5 vol%nickel,the designer Ni/CGO fiber-matrix electrode shows 32%and 67%lower polarization resistance than a nano-Ni impregnated CGO scaffold electrode and conventional cermet electrode respectively.The results in this paper demonstrate quantitatively using real electrode structures that enhancing DPB and hydrogen kinetics are more efficient strategies to enhance electrode performance than simply increasing TPB.