In this paper a new approach for PBL simulation, the non-local closure scheme based on the transient turbulence theory has been used. It was set up as an alternative to local closure schemes which physical concept is ...In this paper a new approach for PBL simulation, the non-local closure scheme based on the transient turbulence theory has been used. It was set up as an alternative to local closure schemes which physical concept is reasonable and distinct. A 2-D non-local closure model was developed in order to study the PBL structure and simulatesome interesting atmospheric processes over non-ulliform underlying surface, especially under the convective and unique weather conditions, such as sea-land circulation and the TIBL structure. The modelled results show good agreement with field measurement.展开更多
In order to research the distribution of thermal field of low temperature discharge from LNG in the ocean, further to formulate reasonable wastewater marine disposal scheme and provide scientific support to the protec...In order to research the distribution of thermal field of low temperature discharge from LNG in the ocean, further to formulate reasonable wastewater marine disposal scheme and provide scientific support to the protection of ocean environment, a two-dimensional hydrodynamic model was used to simulate the tide current field in the radial sand ridge group of shallow sea area of Jiangsu maritime space. This model was based on the tide current characteristics near the LNG project and the seasonal design of the typical hydrological conditions in different seasons. This model was used as the hydrodynamic condition that simulated the transport and diffusion for the heat quantity in the change of time and spatial distribution. Considering the comprehensive heat radiation coefficient of water surface, the 2-D water temperature model was established to predict the spatial distribution and temporal variation of the temperature field in the receiving waters. Finally, results showed that the low temperature drainage less affected in the ocean water environment.展开更多
The assessment of the radiological impact of the liquid discharges from nuclear power plants is a major issue for the envi- ronmental protection. In this study, a numerical model for the radionuclide transport in the ...The assessment of the radiological impact of the liquid discharges from nuclear power plants is a major issue for the envi- ronmental protection. In this study, a numerical model for the radionuclide transport in the aquatic environment is built, based on the hydrodynamic equations, including the complete set of Saint-Venant equations, the sediment transport equations, with consideration of several different particle sizes and the deposition and erosion of the suspended sediments, and the radionuclide transport equations The exchanges of radionuclides between water, suspended matter and bed sediments are described in terms of kinetic transfer coe- fficients. The model is used to simulate the transport of the radionuclides discharged from a planned nuclear power plant project to be sited along the lower Yangtze River. From the model results, one may see the detailed temporal-spatial evolution of the radio- nuclide contamination in the solution, in the suspended matter and in the bed sediments. The model can be used as a basic tool for studying the environmental impacts of the liquid discharges from nuclear facilities on a river system.展开更多
In this paper, the erosion-resisting coefficient was introduced to computebed deformation in a crush bedrock river. In the case of crush bedrock, there has been no propercontrol equation to describe bed stability, whi...In this paper, the erosion-resisting coefficient was introduced to computebed deformation in a crush bedrock river. In the case of crush bedrock, there has been no propercontrol equation to describe bed stability, which leads to difficulty in calculation of the beddeformation with conventional methods. The data from field survey were used to give thee-rosion-resisting capability with an appropriate coefficient. After the determination oflongitudinal distribution expressed by polynomial regression and transversal distribution expressedby normal distribution function, the plane distribution of erosion-resisting coefficient in a crushbedrock river was obtained. With the computational results from a 2-D horizontal flow mathematicalmodel, the erosion-resisting coefficient and controlling condition of local stability were employedto compute the values of bed deformation when riverbed is stable. The above method was applied in acase study, and the computational results of flow and bed deformations are in good a-greement withphysical model test data.展开更多
Based on the fully three-dimensional(3-D)and two-dimensional(2-D)comprehensive CFD(Computational Fluid Dynamics)combustion models for a circulating fluidized bed boiler,a simplified 3-D computational domain considerin...Based on the fully three-dimensional(3-D)and two-dimensional(2-D)comprehensive CFD(Computational Fluid Dynamics)combustion models for a circulating fluidized bed boiler,a simplified 3-D computational domain considering the corrections of furnace side wall openings is proposed.It aims to compensate for the deficiencies of the large amount of computation in the fully 3-D model and improve the air and gas flow treatments at the openings in the simplified 2-D model.Three different computational domains,named as the fully 3-D model,simplified 3-D model and 2-D model,were implemented to perform a comparative CFD analysis in an ultra-supercritical circulating fluidized bed boiler including the hydrodynamics,penetration depth of secondary air,temperature and species distribution.The simulation results computed by the simplified3-D model yield better agreement with the fully 3-D simulation results than those of the 2-D model.The simplified 3-D model is recommended as an alternative computational domain for the conventional 2-D model in the numerical simulation of large-scale circulating fluidized bed boiler.展开更多
The main river, the Dongting Lake and river networks in the Jingjiang reach of the Yangtze River constitute a complex water system, for which a full 2-D hydrodynamic model is established instead of the traditional 1-D...The main river, the Dongting Lake and river networks in the Jingjiang reach of the Yangtze River constitute a complex water system, for which a full 2-D hydrodynamic model is established instead of the traditional 1-D or compound models for simulation of such complex systems, based on the latest developments of computer technologies and numerical methods. To better handle irregular boundaries and keep the computation cost well in a reasonable limit, unstructured grids of moderate scale are used. In addition, a dynamic boundary tracking method is proposed to simulate variable flow domains at different floods, especially, when the moderate scale gird can not describe flows in narrow river-network channels at low water levels. The t9 semi-implicit method and the Eulerian-Lagrangian Method (ELM) are adopted, which make the model unconditionally stable with respect to the gravity wave speed and Courant number restrictions. Properties and efficiency of the model are discussed, and it is concluded that the new model is robust and efficient enough for the simulation of a big, complex water system. Validation tests show that the simulation results agree well with field data. It takes about 0.96 h to complete the computation of a 76 d flood, which indicates that the model is efficient enough for engineering applications.展开更多
A 2-D depth averaged RNG k- ε model is developed to simulate the flow in a typical reach of the Upper Yellow River with non-monotonic banks. In order to take account of the effect of the secondary flow in a bend, the...A 2-D depth averaged RNG k- ε model is developed to simulate the flow in a typical reach of the Upper Yellow River with non-monotonic banks. In order to take account of the effect of the secondary flow in a bend, the momentum equations are modified by adding an additional source term. A comparison between the numerical simulation and the field measurements indicates that the improved 2-D depth averaged RNG k- ε model can improve the accuracy of the numerical simulation. An arc spline interpolation method is developed to interpolate the non-monotonic river banks. The method can also be reasonably applied for the 2-D interpolation of the river bed level. Through a comparison of the water surface gradients simulated in the seven bends of the studied reach, some analytical formulae are improved to reasonably calculate the longitudinal and transverse gradients in meandering river reaches. Furthermore, the positions of the maximum water depth and the maximum velocity in a typical bend are discussed.展开更多
文摘In this paper a new approach for PBL simulation, the non-local closure scheme based on the transient turbulence theory has been used. It was set up as an alternative to local closure schemes which physical concept is reasonable and distinct. A 2-D non-local closure model was developed in order to study the PBL structure and simulatesome interesting atmospheric processes over non-ulliform underlying surface, especially under the convective and unique weather conditions, such as sea-land circulation and the TIBL structure. The modelled results show good agreement with field measurement.
文摘In order to research the distribution of thermal field of low temperature discharge from LNG in the ocean, further to formulate reasonable wastewater marine disposal scheme and provide scientific support to the protection of ocean environment, a two-dimensional hydrodynamic model was used to simulate the tide current field in the radial sand ridge group of shallow sea area of Jiangsu maritime space. This model was based on the tide current characteristics near the LNG project and the seasonal design of the typical hydrological conditions in different seasons. This model was used as the hydrodynamic condition that simulated the transport and diffusion for the heat quantity in the change of time and spatial distribution. Considering the comprehensive heat radiation coefficient of water surface, the 2-D water temperature model was established to predict the spatial distribution and temporal variation of the temperature field in the receiving waters. Finally, results showed that the low temperature drainage less affected in the ocean water environment.
文摘The assessment of the radiological impact of the liquid discharges from nuclear power plants is a major issue for the envi- ronmental protection. In this study, a numerical model for the radionuclide transport in the aquatic environment is built, based on the hydrodynamic equations, including the complete set of Saint-Venant equations, the sediment transport equations, with consideration of several different particle sizes and the deposition and erosion of the suspended sediments, and the radionuclide transport equations The exchanges of radionuclides between water, suspended matter and bed sediments are described in terms of kinetic transfer coe- fficients. The model is used to simulate the transport of the radionuclides discharged from a planned nuclear power plant project to be sited along the lower Yangtze River. From the model results, one may see the detailed temporal-spatial evolution of the radio- nuclide contamination in the solution, in the suspended matter and in the bed sediments. The model can be used as a basic tool for studying the environmental impacts of the liquid discharges from nuclear facilities on a river system.
文摘In this paper, the erosion-resisting coefficient was introduced to computebed deformation in a crush bedrock river. In the case of crush bedrock, there has been no propercontrol equation to describe bed stability, which leads to difficulty in calculation of the beddeformation with conventional methods. The data from field survey were used to give thee-rosion-resisting capability with an appropriate coefficient. After the determination oflongitudinal distribution expressed by polynomial regression and transversal distribution expressedby normal distribution function, the plane distribution of erosion-resisting coefficient in a crushbedrock river was obtained. With the computational results from a 2-D horizontal flow mathematicalmodel, the erosion-resisting coefficient and controlling condition of local stability were employedto compute the values of bed deformation when riverbed is stable. The above method was applied in acase study, and the computational results of flow and bed deformations are in good a-greement withphysical model test data.
基金by the Key Project of the National Research Program of China(Grant No.2020YFB0606201)。
文摘Based on the fully three-dimensional(3-D)and two-dimensional(2-D)comprehensive CFD(Computational Fluid Dynamics)combustion models for a circulating fluidized bed boiler,a simplified 3-D computational domain considering the corrections of furnace side wall openings is proposed.It aims to compensate for the deficiencies of the large amount of computation in the fully 3-D model and improve the air and gas flow treatments at the openings in the simplified 2-D model.Three different computational domains,named as the fully 3-D model,simplified 3-D model and 2-D model,were implemented to perform a comparative CFD analysis in an ultra-supercritical circulating fluidized bed boiler including the hydrodynamics,penetration depth of secondary air,temperature and species distribution.The simulation results computed by the simplified3-D model yield better agreement with the fully 3-D simulation results than those of the 2-D model.The simplified 3-D model is recommended as an alternative computational domain for the conventional 2-D model in the numerical simulation of large-scale circulating fluidized bed boiler.
基金supported by the Eleventh"Five-Year Plan" Science and Technology Program of China(Grant No. 2008BAB29B08)the National Key Basic Research Program of China(973 Program,Grant No.2007CB714100)supported by the Yangtze River Scientific Research Institute project(Grant No.CKSQ2010075)
文摘The main river, the Dongting Lake and river networks in the Jingjiang reach of the Yangtze River constitute a complex water system, for which a full 2-D hydrodynamic model is established instead of the traditional 1-D or compound models for simulation of such complex systems, based on the latest developments of computer technologies and numerical methods. To better handle irregular boundaries and keep the computation cost well in a reasonable limit, unstructured grids of moderate scale are used. In addition, a dynamic boundary tracking method is proposed to simulate variable flow domains at different floods, especially, when the moderate scale gird can not describe flows in narrow river-network channels at low water levels. The t9 semi-implicit method and the Eulerian-Lagrangian Method (ELM) are adopted, which make the model unconditionally stable with respect to the gravity wave speed and Courant number restrictions. Properties and efficiency of the model are discussed, and it is concluded that the new model is robust and efficient enough for the simulation of a big, complex water system. Validation tests show that the simulation results agree well with field data. It takes about 0.96 h to complete the computation of a 76 d flood, which indicates that the model is efficient enough for engineering applications.
基金supported by the National Natural Science Foun-dation of China(Grant Nos.91230111,11361002)the Natural Science Foundation of Ningxia Hui Autonomous Region(Grant No.NZ13086)
文摘A 2-D depth averaged RNG k- ε model is developed to simulate the flow in a typical reach of the Upper Yellow River with non-monotonic banks. In order to take account of the effect of the secondary flow in a bend, the momentum equations are modified by adding an additional source term. A comparison between the numerical simulation and the field measurements indicates that the improved 2-D depth averaged RNG k- ε model can improve the accuracy of the numerical simulation. An arc spline interpolation method is developed to interpolate the non-monotonic river banks. The method can also be reasonably applied for the 2-D interpolation of the river bed level. Through a comparison of the water surface gradients simulated in the seven bends of the studied reach, some analytical formulae are improved to reasonably calculate the longitudinal and transverse gradients in meandering river reaches. Furthermore, the positions of the maximum water depth and the maximum velocity in a typical bend are discussed.