In order to accurately simulate strong three-dimensional (3-D) free surface flows and sediment transport, the fully 3- D non-hydrostatic pressure models are developed based on the incompressible Navier-Stokes equati...In order to accurately simulate strong three-dimensional (3-D) free surface flows and sediment transport, the fully 3- D non-hydrostatic pressure models are developed based on the incompressible Navier-Stokes equations and convection-diffusion equation of sediment concentration with the mixing triangle and quadrilateral grids. The governing equations are discretized with the unstructured finite volume method in order to provide conservation properties of mass and momentum, and flexibility with practical application. It is shown that it is first-order accurate on nonuniform plane two-dimensional (2-D) grids and second-order accurate on uniform plane grids. A third-order approximation of the vertical velocity at the top-layer is applied. In such a way, free surface zero stress boundary condition is satisfied maturely, and very few vertical layers are needed to give an accurate solution even for complex discontinuous flow and short wave simulation. The model is applied to four examples to simulate strong 3-D free surface flows and sediment transport where non-hydrostatic pressures have a considerable effect on the velocity field. The newly developed model is verified against analytical solutions with an excellent agreement.展开更多
In order to predict the effects of cavitation on a hydrofoil, the state equations of the cavitation model were combined with a linear viscous turbulent method for mixed fluids in the computational fluid dynamics (CFD)...In order to predict the effects of cavitation on a hydrofoil, the state equations of the cavitation model were combined with a linear viscous turbulent method for mixed fluids in the computational fluid dynamics (CFD) software FLUENT to simulate steady cavitating flow. At a fixed attack angle, pressure distributions and volume fractions of vapor at different cavitation numbers were simulated, and the results on foil sections agreed well with experimental data. In addition, at the various cavitation numbers, the vapor fractions at different attack angles were also predicted. The vapor region moved towards the front of the airfoil and the length of the cavity grew with increased attack angle. The results show that this method of applying FLUENT to simulate cavitation is reliable.展开更多
In order to protect the city of New Orleans from the Mississippi River flooding, the Bonnet Carré Spillway (BCS) was constructed from 1929 to 1936 to divert flood water from the river into Lake Pontchartrain and ...In order to protect the city of New Orleans from the Mississippi River flooding, the Bonnet Carré Spillway (BCS) was constructed from 1929 to 1936 to divert flood water from the river into Lake Pontchartrain and then into the Gulf of Mexico. During the BCS opening for flood release, large amounts of freshwater, nutrients, sediment, etc. were discharged into Lake Pontchartrain, and caused a lot of environmental problems. To evaluate the environmental impacts of the flood water on lake ecosystems, a two-dimensional numerical model was developed based on CCHE2D and applied to simulate the flow circulation, sediment transport and algal biomass distribution in Lake Pontchartrain. The effect of sediment concentration on the growth of algae was considered in the model. The numerical model was calibrated using field measured data provided by USGS, and then it was validated by the BCS Opening Event in 1997. The simulated results were generally in good agreement with filed data and satellite imagery. The field observation and numerical model show that during the spillway opening for flood release, the sediment concentration is very high, which greatly restricts the growth of algae, so there is no algal bloom observed in the lake. After the closure of BCS, the sediment concentration in the lake reduces gradually, and the nutrient concentration of the lake is still high. Under these conditions, numerical results and satellite imagery showed that the chlorophyll concentration was high and algal bloom might occur.展开更多
Effective management of a river reach requires a sound understanding of flow and sediment transport generated by varying natural and artificial runoff conditions. Flow and sediment transport within the Ning-Meng reach...Effective management of a river reach requires a sound understanding of flow and sediment transport generated by varying natural and artificial runoff conditions. Flow and sediment transport within the Ning-Meng reach of the Yellow River(NMRYR), northern China are controlled by a complex set of factors/processes, mainly including four sets of factors:(1) aeolian sediments from deserts bordering the main stream;(2) inflow of water and sediment from numerous tributaries;(3) impoundment of water by reservoir/hydro-junction; and(4) complex diversion and return of irrigation water. In this study, the 1-D flow & sediment transport model developed by the Yellow River Institute of Hydraulic Research was used to simulate the flow and sediment transport within the NMRYR from 2001 to 2012. All four sets of factors that primarily control the flow and sediment transport mentioned above were considered in this model. Compared to the measured data collected from the hydrological stations along the NMRYR, the simulated flow and sediment transport values were generally acceptable, with relative mean deviation between measured and simulated values of 〈15%. However, simulated sediment concentration and siltation values within two sub-reaches(i.e., Qingtongxia Reservoir to Bayan Gol Hydrological Station and Bayan Gol Hydrological Station to Toudaoguai Hydrological Station) for some periods exhibited relatively large errors(the relative mean deviations between measured and simulated values of 18% and 25%, respectively). These errors are presumably related to the inability to accurately determine the quantity of aeolian sediment influx to the river reach and the inflow of water from the ten ephemeral tributaries. This study may provide some valuable insights into the numerical simulations of flow and sediment transport in large watersheds and also provide a useful model for the effective management of the NMRYR.展开更多
A set of new 2-D equations of interchange between suspended sediment and bed materials was serived by theoretical deduction based on the systematic summarization and assessment the previous studies of simulating the i...A set of new 2-D equations of interchange between suspended sediment and bed materials was serived by theoretical deduction based on the systematic summarization and assessment the previous studies of simulating the interchange between suspended sediment and bed materials in the Lower Yellow River. This model was used to simulate the erosion and deposition processes caused by the interchange between suspended sediment and bed materials in a sketch channel. The results show that these equations are well consistent with the laws of interchange between suspended sediment and bed materials. Furthermore, compared with previous models, it has important practical value not only because of strong theoretical foundation, but also for smaller amount of calculating work and convenient application in practice.展开更多
1-D and 2-D mathematical models for dam break flow were established and verified with the measured data in laboratory. The 1-D and 2-D models were then coupled, and used to simulate the dam break flow from the reservo...1-D and 2-D mathematical models for dam break flow were established and verified with the measured data in laboratory. The 1-D and 2-D models were then coupled, and used to simulate the dam break flow from the reservoir tail to the dam site, the propagation of dam break waves in the downstream channel, and the submergence of dam break flow in the downstream town with the hydrodynamics method. As a numerical example, the presented model was employed to simulate dam break flow of a hydropower station under construction. In simulation, different dam-break durations, upstream flows and water levels in front of dam were considered, and these influencing factors of dam break flow were analyzed, which could be referenced in planning and designing hydropower stations.展开更多
Navigable flow condition simulations can provide detailed information on water depth and velocity distribution, simulation speed is one of the key factors which influence real-time navigation. In this paper, a navigab...Navigable flow condition simulations can provide detailed information on water depth and velocity distribution, simulation speed is one of the key factors which influence real-time navigation. In this paper, a navigable flow condition simulation system is developed to provide useful information for waterway management and shipping safety. To improve the simulation speed of 2-D hydrodynamic model, an explicit finite volume method and Open MP are used to realize parallel computing. Two mesh schemes and two computing platforms are adopted to study the parallel model's performance in the Yangtze River, China. The results show that the parallel model achieves dramatic acceleration, with a maximum speedup ratio of 34.94?. The parallel model can determine the flow state of the navigable channel in about 4 min, efficiency is further improved by a flow simulation scheme database. The developed system can provide early warning information for shipping safety, allowing ships to choose better routes and navigation areas according to real-time navigable flow conditions.展开更多
基金financially supported by the Science and Technology Project of the Ministry of Transport(Grant No.2013328352570)
文摘In order to accurately simulate strong three-dimensional (3-D) free surface flows and sediment transport, the fully 3- D non-hydrostatic pressure models are developed based on the incompressible Navier-Stokes equations and convection-diffusion equation of sediment concentration with the mixing triangle and quadrilateral grids. The governing equations are discretized with the unstructured finite volume method in order to provide conservation properties of mass and momentum, and flexibility with practical application. It is shown that it is first-order accurate on nonuniform plane two-dimensional (2-D) grids and second-order accurate on uniform plane grids. A third-order approximation of the vertical velocity at the top-layer is applied. In such a way, free surface zero stress boundary condition is satisfied maturely, and very few vertical layers are needed to give an accurate solution even for complex discontinuous flow and short wave simulation. The model is applied to four examples to simulate strong 3-D free surface flows and sediment transport where non-hydrostatic pressures have a considerable effect on the velocity field. The newly developed model is verified against analytical solutions with an excellent agreement.
文摘In order to predict the effects of cavitation on a hydrofoil, the state equations of the cavitation model were combined with a linear viscous turbulent method for mixed fluids in the computational fluid dynamics (CFD) software FLUENT to simulate steady cavitating flow. At a fixed attack angle, pressure distributions and volume fractions of vapor at different cavitation numbers were simulated, and the results on foil sections agreed well with experimental data. In addition, at the various cavitation numbers, the vapor fractions at different attack angles were also predicted. The vapor region moved towards the front of the airfoil and the length of the cavity grew with increased attack angle. The results show that this method of applying FLUENT to simulate cavitation is reliable.
文摘In order to protect the city of New Orleans from the Mississippi River flooding, the Bonnet Carré Spillway (BCS) was constructed from 1929 to 1936 to divert flood water from the river into Lake Pontchartrain and then into the Gulf of Mexico. During the BCS opening for flood release, large amounts of freshwater, nutrients, sediment, etc. were discharged into Lake Pontchartrain, and caused a lot of environmental problems. To evaluate the environmental impacts of the flood water on lake ecosystems, a two-dimensional numerical model was developed based on CCHE2D and applied to simulate the flow circulation, sediment transport and algal biomass distribution in Lake Pontchartrain. The effect of sediment concentration on the growth of algae was considered in the model. The numerical model was calibrated using field measured data provided by USGS, and then it was validated by the BCS Opening Event in 1997. The simulated results were generally in good agreement with filed data and satellite imagery. The field observation and numerical model show that during the spillway opening for flood release, the sediment concentration is very high, which greatly restricts the growth of algae, so there is no algal bloom observed in the lake. After the closure of BCS, the sediment concentration in the lake reduces gradually, and the nutrient concentration of the lake is still high. Under these conditions, numerical results and satellite imagery showed that the chlorophyll concentration was high and algal bloom might occur.
基金financially supported by the National Natural Science Foundation of China(51579113,51309111,51309113)
文摘Effective management of a river reach requires a sound understanding of flow and sediment transport generated by varying natural and artificial runoff conditions. Flow and sediment transport within the Ning-Meng reach of the Yellow River(NMRYR), northern China are controlled by a complex set of factors/processes, mainly including four sets of factors:(1) aeolian sediments from deserts bordering the main stream;(2) inflow of water and sediment from numerous tributaries;(3) impoundment of water by reservoir/hydro-junction; and(4) complex diversion and return of irrigation water. In this study, the 1-D flow & sediment transport model developed by the Yellow River Institute of Hydraulic Research was used to simulate the flow and sediment transport within the NMRYR from 2001 to 2012. All four sets of factors that primarily control the flow and sediment transport mentioned above were considered in this model. Compared to the measured data collected from the hydrological stations along the NMRYR, the simulated flow and sediment transport values were generally acceptable, with relative mean deviation between measured and simulated values of 〈15%. However, simulated sediment concentration and siltation values within two sub-reaches(i.e., Qingtongxia Reservoir to Bayan Gol Hydrological Station and Bayan Gol Hydrological Station to Toudaoguai Hydrological Station) for some periods exhibited relatively large errors(the relative mean deviations between measured and simulated values of 18% and 25%, respectively). These errors are presumably related to the inability to accurately determine the quantity of aeolian sediment influx to the river reach and the inflow of water from the ten ephemeral tributaries. This study may provide some valuable insights into the numerical simulations of flow and sediment transport in large watersheds and also provide a useful model for the effective management of the NMRYR.
基金the National Natural Science Foundation of Chinathe Yellow River Conservancy Commission (Grant No. 50339020).
文摘A set of new 2-D equations of interchange between suspended sediment and bed materials was serived by theoretical deduction based on the systematic summarization and assessment the previous studies of simulating the interchange between suspended sediment and bed materials in the Lower Yellow River. This model was used to simulate the erosion and deposition processes caused by the interchange between suspended sediment and bed materials in a sketch channel. The results show that these equations are well consistent with the laws of interchange between suspended sediment and bed materials. Furthermore, compared with previous models, it has important practical value not only because of strong theoretical foundation, but also for smaller amount of calculating work and convenient application in practice.
基金the National Basic Research Program of China(973 Program, Grant No. 2003CB415203)the National Natural Science Foundation of China (Grant No.50579054).
文摘1-D and 2-D mathematical models for dam break flow were established and verified with the measured data in laboratory. The 1-D and 2-D models were then coupled, and used to simulate the dam break flow from the reservoir tail to the dam site, the propagation of dam break waves in the downstream channel, and the submergence of dam break flow in the downstream town with the hydrodynamics method. As a numerical example, the presented model was employed to simulate dam break flow of a hydropower station under construction. In simulation, different dam-break durations, upstream flows and water levels in front of dam were considered, and these influencing factors of dam break flow were analyzed, which could be referenced in planning and designing hydropower stations.
基金Project supported by the 13th Five-Year National Key Research and Development Program of China(Grant No.2016YFC0401407)the 12th Five-Year National Key Tech-nology R&D Program(Grant No.2012BAB05B05)the National Natural Science Foundation of China(Grant No.51722901)
文摘Navigable flow condition simulations can provide detailed information on water depth and velocity distribution, simulation speed is one of the key factors which influence real-time navigation. In this paper, a navigable flow condition simulation system is developed to provide useful information for waterway management and shipping safety. To improve the simulation speed of 2-D hydrodynamic model, an explicit finite volume method and Open MP are used to realize parallel computing. Two mesh schemes and two computing platforms are adopted to study the parallel model's performance in the Yangtze River, China. The results show that the parallel model achieves dramatic acceleration, with a maximum speedup ratio of 34.94?. The parallel model can determine the flow state of the navigable channel in about 4 min, efficiency is further improved by a flow simulation scheme database. The developed system can provide early warning information for shipping safety, allowing ships to choose better routes and navigation areas according to real-time navigable flow conditions.