In order to predict the effects of cavitation on a hydrofoil, the state equations of the cavitation model were combined with a linear viscous turbulent method for mixed fluids in the computational fluid dynamics (CFD)...In order to predict the effects of cavitation on a hydrofoil, the state equations of the cavitation model were combined with a linear viscous turbulent method for mixed fluids in the computational fluid dynamics (CFD) software FLUENT to simulate steady cavitating flow. At a fixed attack angle, pressure distributions and volume fractions of vapor at different cavitation numbers were simulated, and the results on foil sections agreed well with experimental data. In addition, at the various cavitation numbers, the vapor fractions at different attack angles were also predicted. The vapor region moved towards the front of the airfoil and the length of the cavity grew with increased attack angle. The results show that this method of applying FLUENT to simulate cavitation is reliable.展开更多
In the present paper,the unsteady cavitating turbulent flow over the twisted NACA66 hydrofoil is investigated based on an modified shear stress transfer k-ωpartially averaged Navier-Stokes(MSST PANS)model,i.e.,new MS...In the present paper,the unsteady cavitating turbulent flow over the twisted NACA66 hydrofoil is investigated based on an modified shear stress transfer k-ωpartially averaged Navier-Stokes(MSST PANS)model,i.e.,new MSST PANS(NMSST PANS)model,where the production term of kinetic energy in the turbulence model is modified with helicity.Compared with the experimental data,cavitation evolution and its characteristic frequency are satisfactorily predicted by the proposed NMSST PANS model.It is revealed that the interaction among the main flow,the reentrant jets,and sheet cavitation causes the formation of the primary shedding cavity near the mid-span and the secondary shedding cavity at each side of the twisted hydrofoil,and further induces the remarkable pressure gradient around shedding cavities.Along with the development of the primary and the secondary shedding cavities,the great pressure gradient associated with large cavity volume variation promotes the vortical flow generation and the spatial deformation of vortex structure during cavitation evolution,and results in the primary and the secondary U-type vortices.Further,dynamic mode decomposition(DMD)analysis is utilized to confirm the interaction among the main flow,the main reentrant jet and two side reentrant jets,and cavitation.These results indicate that the proposed NMSST PANS model is suitable to simulate the complicated cavitating turbulent flow for various engineering applications.展开更多
文摘In order to predict the effects of cavitation on a hydrofoil, the state equations of the cavitation model were combined with a linear viscous turbulent method for mixed fluids in the computational fluid dynamics (CFD) software FLUENT to simulate steady cavitating flow. At a fixed attack angle, pressure distributions and volume fractions of vapor at different cavitation numbers were simulated, and the results on foil sections agreed well with experimental data. In addition, at the various cavitation numbers, the vapor fractions at different attack angles were also predicted. The vapor region moved towards the front of the airfoil and the length of the cavity grew with increased attack angle. The results show that this method of applying FLUENT to simulate cavitation is reliable.
基金Project supported by the National Natural Science Foundation of China (Grant No.52336001).
文摘In the present paper,the unsteady cavitating turbulent flow over the twisted NACA66 hydrofoil is investigated based on an modified shear stress transfer k-ωpartially averaged Navier-Stokes(MSST PANS)model,i.e.,new MSST PANS(NMSST PANS)model,where the production term of kinetic energy in the turbulence model is modified with helicity.Compared with the experimental data,cavitation evolution and its characteristic frequency are satisfactorily predicted by the proposed NMSST PANS model.It is revealed that the interaction among the main flow,the reentrant jets,and sheet cavitation causes the formation of the primary shedding cavity near the mid-span and the secondary shedding cavity at each side of the twisted hydrofoil,and further induces the remarkable pressure gradient around shedding cavities.Along with the development of the primary and the secondary shedding cavities,the great pressure gradient associated with large cavity volume variation promotes the vortical flow generation and the spatial deformation of vortex structure during cavitation evolution,and results in the primary and the secondary U-type vortices.Further,dynamic mode decomposition(DMD)analysis is utilized to confirm the interaction among the main flow,the main reentrant jet and two side reentrant jets,and cavitation.These results indicate that the proposed NMSST PANS model is suitable to simulate the complicated cavitating turbulent flow for various engineering applications.