A flexible two degrees of freedom (2-DOF) steering model of multi-axlevehicle (MAV) is presented with considering the effect of frame flexibility based on the classic2-DOF model. A method to calculate the frame flexib...A flexible two degrees of freedom (2-DOF) steering model of multi-axlevehicle (MAV) is presented with considering the effect of frame flexibility based on the classic2-DOF model. A method to calculate the frame flexibility is derived by using three moments equation.The steering stability of MAV is analyzed. The steering performance of MAV is also researched infrequency domain. Simulation results show that the dynamic effects of flexible model are more severethan rigid model and the flexible effect of frame will weaken the steering stability of MAV.Different disposals of steering axles lead to different steering characteristics of MAV. Thein-phase steering mode improves the steering characteristics and stability at high speed. Theanti-phase steering mode increases the steering mobility at low vehicle speed.展开更多
This paper is concerned with the robust control synthesis of autonomous underwater vehicle (AUV) for general path following maneuvers. First, we present maneuvering kinematics and vehicle dynamics in a unified frame...This paper is concerned with the robust control synthesis of autonomous underwater vehicle (AUV) for general path following maneuvers. First, we present maneuvering kinematics and vehicle dynamics in a unified framework. Based on H∞ loop-shaping procedure, the 2-DOF autopilot controller has been presented to enhance stability and path tracking. By use of model reduction, the high-order control system is reduced to one with reasonable order, and further the scaled low-order controller has been analyzed in both the frequency and the time domains. Finally, it is shown that the autopilot control system provides robust performance and stability against prescribed levels of uncertainty.展开更多
文摘A flexible two degrees of freedom (2-DOF) steering model of multi-axlevehicle (MAV) is presented with considering the effect of frame flexibility based on the classic2-DOF model. A method to calculate the frame flexibility is derived by using three moments equation.The steering stability of MAV is analyzed. The steering performance of MAV is also researched infrequency domain. Simulation results show that the dynamic effects of flexible model are more severethan rigid model and the flexible effect of frame will weaken the steering stability of MAV.Different disposals of steering axles lead to different steering characteristics of MAV. Thein-phase steering mode improves the steering characteristics and stability at high speed. Theanti-phase steering mode increases the steering mobility at low vehicle speed.
基金a part of the project titled "Development of Key Marine Equipments for Enhancement of Ocean Industry-Development of Underwater Manipulator and Thrusting System Driven by Electric Motor" funded by the Ministry of Land, Transport and Maritime Affairs, Korea
文摘This paper is concerned with the robust control synthesis of autonomous underwater vehicle (AUV) for general path following maneuvers. First, we present maneuvering kinematics and vehicle dynamics in a unified framework. Based on H∞ loop-shaping procedure, the 2-DOF autopilot controller has been presented to enhance stability and path tracking. By use of model reduction, the high-order control system is reduced to one with reasonable order, and further the scaled low-order controller has been analyzed in both the frequency and the time domains. Finally, it is shown that the autopilot control system provides robust performance and stability against prescribed levels of uncertainty.