A series of SnO2‐based catalysts modified by Mn, Zr, Ti and Pb oxides with a Sn/M (M=Mn, Zr, Ti and Pb) molar ratio of 9/1 were prepared by a co‐precipitation method and used for CH4 and CO oxidation. The Mn3+, ...A series of SnO2‐based catalysts modified by Mn, Zr, Ti and Pb oxides with a Sn/M (M=Mn, Zr, Ti and Pb) molar ratio of 9/1 were prepared by a co‐precipitation method and used for CH4 and CO oxidation. The Mn3+, Zr4+, Ti4+and Pb4+cations are incorporated into the lattice of tetragonal rutile SnO2 to form a solid solution structure. As a consequence, the surface area and thermal stability of the catalysts are improved. Moreover, the oxygen species of the modified catalysts become easier to be reduced. Therefore, the oxidation activity over the catalysts was improved, except for the one modified by Pb oxide. Manganese oxide demonstrates the best promotional effects for SnO2. Using an X‐ray diffraction extrapolation method, the lattice capacity of SnO2 for Mn2O3 was 0.135 g Mn2O3/g SnO2, which indicates that to form stable solid solution, only 21%Sn4+cations in the lattice can be maximally replaced by Mn3+. If the amount of Mn3+cations is over the capacity, Mn2O3 will be formed, which is not favorable for the activity of the catalysts. The Sn rich samples with only Sn‐Mn solid solution phase show higher activity than the ones with excess Mn2O3 species.展开更多
Photocatalytic CO_(2)reduction to sustainably product of fuels is a potential route to achieve clean energy conversion.Unfortunately,the sluggish charge transport dynamics and poor CO_(2)activation performance result ...Photocatalytic CO_(2)reduction to sustainably product of fuels is a potential route to achieve clean energy conversion.Unfortunately,the sluggish charge transport dynamics and poor CO_(2)activation performance result in a low CO_(2)conversion efficiency.Herein,we develop a multidimensional In_(2)O_(3)/In_(2)S_(3)(IO/IS)heterojunction with abundant lattice distortion structure and high concentration of oxygen defects.The close contact interfaces between the junction of the two phases ensure undisturbed transmission of electrons with high‐speed.The increased free electron concentration promotes the adsorption and activation of CO2 on the catalyst surface,leaving the key intermediate*COOH at a lower energy barrier.The perfect combination of the band matching oxide and sulfide effectively reduces the internal energy barrier of the CO2 reduction reaction.Furthermore,the lattice distortion structure not only provides additional active sites,but also optimizes the kinetics of the reaction through microstructural regulation.Remarkably,the optimal IO/IS heterojunction exhibits superior CO_(2)reduction performance with CO evolution rate of 12.22μmol g^(−1)h^(−1),achieving about 4 times compared to that of In_(2)O_(3)and In2S3,respectively.This work emphasizes the importance of tight interfaces of heterojunction in improving the performance of CO_(2)photoreduction,and provides an effective strategy for construction of heterojunction photocatalysts.展开更多
We synthesized a quasi-two-dimensional distorted triangular lattice antiferromagnet Ca3CoNb2O9, in which the effective spin of Co2+is 1/2 at low temperatures, whose magnetic properties were studied by dc susceptibili...We synthesized a quasi-two-dimensional distorted triangular lattice antiferromagnet Ca3CoNb2O9, in which the effective spin of Co2+is 1/2 at low temperatures, whose magnetic properties were studied by dc susceptibility and magnetization techniques. The x-ray diffraction confirms the quality of our powder samples. The large Weiss constant θCW --55 K and the low Neel temperature TN- 1.45 K give a frustration factor f =| θCW/TN|≈ 38, suggesting that Ca3 Co Nb2O9resides in strong frustration regime. Slightly below TN, deviation between the susceptibility data under zero-field cooling(ZFC)and field cooling(FC) is observed. A new magnetic state with 1/3 of the saturate magnetization Ms is suggested in the magnetization curve at 0.46 K. Our study indicates that Ca3 Co Nb2O9is an interesting material to investigate magnetism in triangular lattice antiferromagnets with weak anisotropy.展开更多
Lattice effect on magnetic and electrical transport properties of Ln2/3Pb1/3MnO3 (Ln=La, Pr, Nd) films prepared by RF magnetron sputtering technique were investigated. With the decrease of the average ions radius ...Lattice effect on magnetic and electrical transport properties of Ln2/3Pb1/3MnO3 (Ln=La, Pr, Nd) films prepared by RF magnetron sputtering technique were investigated. With the decrease of the average ions radius 〈rA〉, the structure of Ln2/3Pb1/3MnO3 (Ln=La, Pr, Nd) targets transit from the rhombohedral phase to the orthorhombic phase, and the Curie temperature reduces rapidly with the decrease of 〈rA〉. The electrical properties show that films are the metallic state which can be fitted to the formula: ρ(T)=ρ0 + ρ1T^2 + ρ2T^4.5 at low temperatures. The temperature range of the ferromagnetic metallic state becomes narrow with the decrease of 〈rA〉. The phenomenon can be explained by the lattice effect.展开更多
A new 2-naphthate(NA-)-based coordination complex,[Cu3(μ3-OH)4(NA)2]n(1),was hydrothermally prepared and structurally and magnetically characterized.1 crystallizes in the monoclinic P21/c space group with a =...A new 2-naphthate(NA-)-based coordination complex,[Cu3(μ3-OH)4(NA)2]n(1),was hydrothermally prepared and structurally and magnetically characterized.1 crystallizes in the monoclinic P21/c space group with a = 19.990(7),b = 5.616(2),c = 9.179(3) A,β = 96.536(6)°,V = 1023.8(7) A^3,Dc = 1.950 g/cm^3,Mr = 300.49,Z = 4,F(000) = 602,μ = 3.138 mm^-1,the final R = 0.0317 and w R = 0.0818 for 4944 observed reflections with I 〉 2σ(I).Complex 1 exhibits an extended corner-sharing {Cu3(μ3-OH)}^5+ triangle-based layered structure with the NA^-ligands located on both sides.The interplay of the typical anti-and ferromagnetic interactions mediated by μ3-OH^-and μ-syn,syn-carboxylate heterobridges leads to the overall intralayer ferromagnetic couplings of 1.展开更多
A 2-dimension linguistic lattice implication algebra(2DL-LIA)can build a bridge between logical algebra and 2-dimension fuzzy linguistic information.In this paper,the notion of a Boolean element is proposed in a 2DL-L...A 2-dimension linguistic lattice implication algebra(2DL-LIA)can build a bridge between logical algebra and 2-dimension fuzzy linguistic information.In this paper,the notion of a Boolean element is proposed in a 2DL-LIA and some properties of Boolean elements are discussed.Then derivations on 2DL-LIAs are introduced and the related properties of derivations are investigated.Moreover,it proves that the derivations on 2DL-LIAs can be constructed by Boolean elements.展开更多
Using Tadpole-improved lattice action,the low-lying glueball spectrum of the pure-gauge SU(2)theory is calculated on an anisotropic lattice.The results of m(0+),m(2+),and m(0-)are consistent with that for the Wilson a...Using Tadpole-improved lattice action,the low-lying glueball spectrum of the pure-gauge SU(2)theory is calculated on an anisotropic lattice.The results of m(0+),m(2+),and m(0-)are consistent with that for the Wilson action on much larger lattices.This shows the advantage of using the coarse,anisotropic lattice to calculate the glueball masses.展开更多
We analyzed the SU(2)×SU(2)chiral model with mixed fundamental-adjoint action on the 2-dimensional(2-D)random lattice by using Monte-Carlo(M-C)simulation.The results sluw that the model behaves like the mixed SU(...We analyzed the SU(2)×SU(2)chiral model with mixed fundamental-adjoint action on the 2-dimensional(2-D)random lattice by using Monte-Carlo(M-C)simulation.The results sluw that the model behaves like the mixed SU(2)×SU(2)chiral model on the 2-D regular lattice,but the character of the phase transition seems to be different.展开更多
The pure lattice SU(2)gauge theory is studied with a single plaquette EXP action by means of Monte Carlo simulations using a 120 element subgroup.The ratio of the lattice a-parameter to the square root of string tensi...The pure lattice SU(2)gauge theory is studied with a single plaquette EXP action by means of Monte Carlo simulations using a 120 element subgroup.The ratio of the lattice a-parameter to the square root of string tension is(1.02±0.05)×10^(-4),which is much less than that of Wilson's action.But at finite temperatures,the deconfinement transition point is found to be Tq=(210±28)MeV,in good agreement with Wilson's one.展开更多
Saline aquifers are chosen for geological storage of greenhouse gas CO_2 because of their storage potential.In almost all cases of practical interest,CO_2 is present on top of the liquid and CO_2 dissolution leads to ...Saline aquifers are chosen for geological storage of greenhouse gas CO_2 because of their storage potential.In almost all cases of practical interest,CO_2 is present on top of the liquid and CO_2 dissolution leads to a small increase in the density of the aqueous phase.This situation results in the creation of negative buoyancy force for downward density-driven natural convection and consequently enhances CO_2 sequestration.In order to study CO_2 injection at pore-level,an isothermal Lattice Boltzmann Model(LBM) with two distribution functions is adopted to simulate density-driven natural convection in porous media with irregular geometry obtained by image treatment.The present analysis showed that after the onset of natural convection instability,the brine with a high CO_2 concentration infringed into the underlying unaffected brine,in favor of the migration of CO_2 into the pore structure.With low Rayleigh numbers,the instantaneous mass flux and total dissolved CO_2 mass are very close to that derived from penetration theory(diffusion only),but the fluxes are significantly enhanced with high Ra number.The simulated results show that as the time increases,some chaotic and recirculation zones in the flow appear obviously,which promotes the renewal of interfacial liquid,and hence enhances dissolution of CO_2 into brine.This study is focused on the scale of a few pores,but shows implications in enhanced oil/gas recovery with CO_2 sequestration in aquifers.展开更多
Based on the density functional theory (DFT), using the scheme of the linearized augmented plane wave and the improved local orbital (APW + lo), the structure, the electronic bands and the magnetism of supercondu...Based on the density functional theory (DFT), using the scheme of the linearized augmented plane wave and the improved local orbital (APW + lo), the structure, the electronic bands and the magnetism of superconducting compounds Cax-xKxFe2As2 (x = 0, 0.25, 0.5, 0.75, 1) are optimized and calculated. The calculation results indicate that with K-doping the lengths of the a, b axes can decrease, and the length of the c axis, the volume, the energy of spin-down valence bands, and the DOS at the Fermi level can increase, which leads the magnetic moment of the system to increase.展开更多
We report systematic studies on superconducting properties of the Laves phase superconductor ZrIr_(2).It crystallizes in a C15-type(cubic MgCu_(2)-type,space group Fd3m)structure in which the Ir atoms form a kagome la...We report systematic studies on superconducting properties of the Laves phase superconductor ZrIr_(2).It crystallizes in a C15-type(cubic MgCu_(2)-type,space group Fd3m)structure in which the Ir atoms form a kagome lattice,with cell parameters a=b=c=7.3596(1)?.Resistivity and magnetic susceptibility measurements indicate that ZrIr_(2) is a type-Ⅱsuperconductor with a transition temperature of 4.0 K.The estimated lower and upper critical fields are 12.8 mT and 4.78 T,respectively.Heat capacity measurements confirm the bulk superconductivity in ZrIr_(2).ZrIr_(2) is found to possibly host strong-coupled s-wave superconductivity with the normalized specific heat change△C_(e)/γT_(c)~1.86 and the coupling strength△_(0)/k_BT_(c)~1.92.First-principles calculations suggest that ZrIr_(2) has three-dimensional Fermi surfaces with simple topologies,and the states at Fermi level mainly originate from the Ir-5d and Zr-4d orbitals.Similar to SrIr_(2) and ThIr_(2),spin–orbit coupling has dramatic influences on the band structure in ZrIr_(2).展开更多
Single crystals of CeMn_(0.85)Sb_(2) have been successfully synthesized by using the Bi as flux.Analysis of single crystal x-ray diffraction data confirms that CeMn_(0.85)Sb_(2) crystallizes in the HfCuSi_(2)-type str...Single crystals of CeMn_(0.85)Sb_(2) have been successfully synthesized by using the Bi as flux.Analysis of single crystal x-ray diffraction data confirms that CeMn_(0.85)Sb_(2) crystallizes in the HfCuSi_(2)-type structure with the space group P4/nmm(No.129).In the case of H‖c,CeMn_(0.85)Sb_(2) displays a robust antiferromagnetic transition at~160 K for Mn-sublattice,and there is no sign of magnetic order regarding Ce-sublattice.In the case of the Mn-sublattice shows signs of magnetic order at 160 K and 116 K,indicating a possible spin reorientation.There is no sign of magnetic order for the Cesublattice either,but,alternating current magnetic susceptibility measurements reveal a spin glass state below 18 K in the case of H⊥c.Isothermal magnetization curves measured below magnetic order with H⊥c show saturation and even large hysteresis at 2 K,indicating the presence of a ferromagnetic component.In addition,a field-induced spin-flop transition is observed in the case of H⊥c,indicating a field-induced spin reorientation of Mn spins.Electrical resistivity measurements indicate a metallic nature for CeMn_(0.85)Sb_(2) and large anisotropy which is consistent with its quasi-two-dimensional layered structure.展开更多
To understand the effect of the doping amount of Cu^2+ on the structure and reactivity of SnO2 in NOx-SCR with NH3, a series of Sn-Cu-O binary oxide catalysts with different Sn/Cu ratios have been prepared and thoroug...To understand the effect of the doping amount of Cu^2+ on the structure and reactivity of SnO2 in NOx-SCR with NH3, a series of Sn-Cu-O binary oxide catalysts with different Sn/Cu ratios have been prepared and thoroughly characterized. Using the XRD extrapolation method, the SnO2 lattice capacity for Cu^2+ cations is determined at 0.10 g Cu O per g of SnO2, equaling a Sn/Cu molar ratio of 84/16. Therefore, in a tetragonal rutile SnO2 lattice, only a maximum of 16% of the Sn4+ cations can be replaced by Cu^2+ to form a stable solid solution structure. If the Cu content is higher, Cu O will form on the catalyst surface, which has a negative effect on the reaction performance. For samples in a pure solid solution phase, the number of surface defects increase with increasing Cu content until it reaches the lattice capacity, as confirmed by Raman spectroscopy. As a result, the amounts of both active oxygen species and acidic sites on the surface, which critically determine the reaction performance, also increase and reach the maximum level for the catalyst with a Cu content close to the lattice capacity. A distinct lattice capacity threshold effect on the structure and reactivity of Sn-Cu binary oxide catalysts has been observed. A Sn-Cu catalyst with the best reaction performance can be obtained by doping the SnO2 matrix with the lattice capacity amount of Cu^2+.展开更多
We present a variational density-functional perturbation theory (DFPT) to investigate the lattice dynamics and vibra- tional properties of single crystal bismuth telluride material. The phonon dispersion curves and ...We present a variational density-functional perturbation theory (DFPT) to investigate the lattice dynamics and vibra- tional properties of single crystal bismuth telluride material. The phonon dispersion curves and phonon density of states (DOS) of the material were obtained. The phonon dispersions are divided into two fields by a phonon gap. In the lower field, atomic vibrations of both Bi and Te contribute to the DOS. In the higher field, most contributions come from Te atoms. The calculated Born effective charges and dielectric constants reveal a great anisotropy in the crystal. The largest Born effective charge generates a significant dynamic charge transferring along the c axis. By DFPT calculation, the greatest LO-TO splitting takes place in the infrared phonon modes and reaches 1.7 THz in the Brillouin zone center. The Raman spectra and peaks corresponding to respective atomic vibration modes were found to be in good agreement with the experimental data.展开更多
Two-dimensional honeycomb crystals have inspired intense research interest for their novel properties and great potential in electronics and optoelectronics. Here, through molecular beam epitaxy on SrTiO_3(001), we re...Two-dimensional honeycomb crystals have inspired intense research interest for their novel properties and great potential in electronics and optoelectronics. Here, through molecular beam epitaxy on SrTiO_3(001), we report successful epitaxial growth of metal-rich chalcogenide Fe_(2)Te, a honeycomb-structured film that has no direct bulk analogue, under Te-limited growth conditions. The structural morphology and electronic properties of Fe_(2)Te are explored with scanning tunneling microscopy and angle resolved photoemission spectroscopy, which reveal electronic bands cross the Fermi level and nearly flat bands. Moreover, we find a weak interfacial interaction between Fe_(2)Te and the underlying substrates, paving a newly developed alternative avenue for honeycomb-based electronic devices.展开更多
We investigate the SU(2)gauge effects on bilayer honeycomb lattice thoroughly.We discover a topological Lifshitz transition induced by the non-Abelian gauge potential.Topological Lifshitz transitions are determined by...We investigate the SU(2)gauge effects on bilayer honeycomb lattice thoroughly.We discover a topological Lifshitz transition induced by the non-Abelian gauge potential.Topological Lifshitz transitions are determined by topologies of Fermi surfaces in the momentum space.Fermi surface consists of N=8 Dirac points atπ-flux point instead of N=4 in the trivial Abelian regimes.A local winding number is defined to classify the universality class of the gapless excitations.We also obtain the phase diagram of gauge fluxes by solving the secular equation.Furthermore,the novel edge states of biased bilayer nanoribbon with gauge fluxes are also investigated.展开更多
The development of high-efficiency and cost-effective bifunctional electrocatalysts for overall water splitting remains a formidable challenge.Herein,FeNi-Nd_(2)O_(3) nanoparticles anchored on N-doped carbon nanotubes...The development of high-efficiency and cost-effective bifunctional electrocatalysts for overall water splitting remains a formidable challenge.Herein,FeNi-Nd_(2)O_(3) nanoparticles anchored on N-doped carbon nanotubes(FeNi-Nd_(2)O_(3)/NCN) are designed for highly effective overall water splitting via a facile two-step hydrothermal approach.The synthetic FeNi-Nd_(2)O_(3) hetero-trimers(Fe 2p-Ni 2p-Nd 3d orbital coupling)on NCN achieve excellent oxygen evolution reaction(OER) and hydrogen evolution reaction(HER) activities with overpotentials of 270 and 120 mV at 10 mA cm^(-2) in 1 M KOH solution.Moreover,a small voltage of 1.52 V at 10 mA cm^(-2) is achieved when FeNi-Nd_(2)O_(3)/NCN is assessed as bifunctional catalyst for overall water splitting,which is superior to the typically integrated Pt/C and RuO_(2) counterparts(1.54 V at 10 mA cm^(-2)).The related characterizations including X-ray absorption fine structure(XAFS)spectroscopy show that the remarkably improved activity is originated from Nd_(2)O_(3)-induced FeNi bimetallic lattice contraction.Furthermore,density functional theory(DFT) calculations indicate that the lattice contraction reduces binding energies of intermediates by downshifting the position of FeNi bimetallic d-band center relative to the Fermi level to optimize catalytic performance.Therefore,the Nd_(2)O_(3)-induced FeNi bimetallic lattice contraction may provide a new perspective for designing and synthesizing innovative catalytic systems.展开更多
基金supported by the National Natural Science Foundation of China (21263015,21567016 and 21503106)the Education Department Foundation of Jiangxi Province (KJLD14005 and GJJ150016)the Natural Science Foundation of Jiangxi Province (20142BAB213013 and 20151BBE50006),which are greatly acknowledged by the authors~~
文摘A series of SnO2‐based catalysts modified by Mn, Zr, Ti and Pb oxides with a Sn/M (M=Mn, Zr, Ti and Pb) molar ratio of 9/1 were prepared by a co‐precipitation method and used for CH4 and CO oxidation. The Mn3+, Zr4+, Ti4+and Pb4+cations are incorporated into the lattice of tetragonal rutile SnO2 to form a solid solution structure. As a consequence, the surface area and thermal stability of the catalysts are improved. Moreover, the oxygen species of the modified catalysts become easier to be reduced. Therefore, the oxidation activity over the catalysts was improved, except for the one modified by Pb oxide. Manganese oxide demonstrates the best promotional effects for SnO2. Using an X‐ray diffraction extrapolation method, the lattice capacity of SnO2 for Mn2O3 was 0.135 g Mn2O3/g SnO2, which indicates that to form stable solid solution, only 21%Sn4+cations in the lattice can be maximally replaced by Mn3+. If the amount of Mn3+cations is over the capacity, Mn2O3 will be formed, which is not favorable for the activity of the catalysts. The Sn rich samples with only Sn‐Mn solid solution phase show higher activity than the ones with excess Mn2O3 species.
文摘Photocatalytic CO_(2)reduction to sustainably product of fuels is a potential route to achieve clean energy conversion.Unfortunately,the sluggish charge transport dynamics and poor CO_(2)activation performance result in a low CO_(2)conversion efficiency.Herein,we develop a multidimensional In_(2)O_(3)/In_(2)S_(3)(IO/IS)heterojunction with abundant lattice distortion structure and high concentration of oxygen defects.The close contact interfaces between the junction of the two phases ensure undisturbed transmission of electrons with high‐speed.The increased free electron concentration promotes the adsorption and activation of CO2 on the catalyst surface,leaving the key intermediate*COOH at a lower energy barrier.The perfect combination of the band matching oxide and sulfide effectively reduces the internal energy barrier of the CO2 reduction reaction.Furthermore,the lattice distortion structure not only provides additional active sites,but also optimizes the kinetics of the reaction through microstructural regulation.Remarkably,the optimal IO/IS heterojunction exhibits superior CO_(2)reduction performance with CO evolution rate of 12.22μmol g^(−1)h^(−1),achieving about 4 times compared to that of In_(2)O_(3)and In2S3,respectively.This work emphasizes the importance of tight interfaces of heterojunction in improving the performance of CO_(2)photoreduction,and provides an effective strategy for construction of heterojunction photocatalysts.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11374364 and 11222433)the National Basic Research Program of China(Grant No.2011CBA00112)+2 种基金Research at Mc Master University supported by the Natural Sciences and Engineering Research CouncilWork at North China Electric Power University supported by the Scientific Research Foundation for the Returned Overseas Chinese ScholarsState Education Ministry
文摘We synthesized a quasi-two-dimensional distorted triangular lattice antiferromagnet Ca3CoNb2O9, in which the effective spin of Co2+is 1/2 at low temperatures, whose magnetic properties were studied by dc susceptibility and magnetization techniques. The x-ray diffraction confirms the quality of our powder samples. The large Weiss constant θCW --55 K and the low Neel temperature TN- 1.45 K give a frustration factor f =| θCW/TN|≈ 38, suggesting that Ca3 Co Nb2O9resides in strong frustration regime. Slightly below TN, deviation between the susceptibility data under zero-field cooling(ZFC)and field cooling(FC) is observed. A new magnetic state with 1/3 of the saturate magnetization Ms is suggested in the magnetization curve at 0.46 K. Our study indicates that Ca3 Co Nb2O9is an interesting material to investigate magnetism in triangular lattice antiferromagnets with weak anisotropy.
基金the National Natural Science Foundation of China under grant No.50572088Xi'an University of Science Technology Breeding Foundation No.200737.
文摘Lattice effect on magnetic and electrical transport properties of Ln2/3Pb1/3MnO3 (Ln=La, Pr, Nd) films prepared by RF magnetron sputtering technique were investigated. With the decrease of the average ions radius 〈rA〉, the structure of Ln2/3Pb1/3MnO3 (Ln=La, Pr, Nd) targets transit from the rhombohedral phase to the orthorhombic phase, and the Curie temperature reduces rapidly with the decrease of 〈rA〉. The electrical properties show that films are the metallic state which can be fitted to the formula: ρ(T)=ρ0 + ρ1T^2 + ρ2T^4.5 at low temperatures. The temperature range of the ferromagnetic metallic state becomes narrow with the decrease of 〈rA〉. The phenomenon can be explained by the lattice effect.
基金Supported by the National Natural Science Foundation of China(No.21171129 and 21371134)the Program for Innovative Research Team in University of Tianjin(TD12-5038)
文摘A new 2-naphthate(NA-)-based coordination complex,[Cu3(μ3-OH)4(NA)2]n(1),was hydrothermally prepared and structurally and magnetically characterized.1 crystallizes in the monoclinic P21/c space group with a = 19.990(7),b = 5.616(2),c = 9.179(3) A,β = 96.536(6)°,V = 1023.8(7) A^3,Dc = 1.950 g/cm^3,Mr = 300.49,Z = 4,F(000) = 602,μ = 3.138 mm^-1,the final R = 0.0317 and w R = 0.0818 for 4944 observed reflections with I 〉 2σ(I).Complex 1 exhibits an extended corner-sharing {Cu3(μ3-OH)}^5+ triangle-based layered structure with the NA^-ligands located on both sides.The interplay of the typical anti-and ferromagnetic interactions mediated by μ3-OH^-and μ-syn,syn-carboxylate heterobridges leads to the overall intralayer ferromagnetic couplings of 1.
基金Supported by the National Natural Science Foundation of China(11501523,61673320)。
文摘A 2-dimension linguistic lattice implication algebra(2DL-LIA)can build a bridge between logical algebra and 2-dimension fuzzy linguistic information.In this paper,the notion of a Boolean element is proposed in a 2DL-LIA and some properties of Boolean elements are discussed.Then derivations on 2DL-LIAs are introduced and the related properties of derivations are investigated.Moreover,it proves that the derivations on 2DL-LIAs can be constructed by Boolean elements.
基金Supported in part by the National Natural Science Foundation of China under Grant Nos.19677205 and 19575039.
文摘Using Tadpole-improved lattice action,the low-lying glueball spectrum of the pure-gauge SU(2)theory is calculated on an anisotropic lattice.The results of m(0+),m(2+),and m(0-)are consistent with that for the Wilson action on much larger lattices.This shows the advantage of using the coarse,anisotropic lattice to calculate the glueball masses.
文摘We analyzed the SU(2)×SU(2)chiral model with mixed fundamental-adjoint action on the 2-dimensional(2-D)random lattice by using Monte-Carlo(M-C)simulation.The results sluw that the model behaves like the mixed SU(2)×SU(2)chiral model on the 2-D regular lattice,but the character of the phase transition seems to be different.
文摘The pure lattice SU(2)gauge theory is studied with a single plaquette EXP action by means of Monte Carlo simulations using a 120 element subgroup.The ratio of the lattice a-parameter to the square root of string tension is(1.02±0.05)×10^(-4),which is much less than that of Wilson's action.But at finite temperatures,the deconfinement transition point is found to be Tq=(210±28)MeV,in good agreement with Wilson's one.
文摘Saline aquifers are chosen for geological storage of greenhouse gas CO_2 because of their storage potential.In almost all cases of practical interest,CO_2 is present on top of the liquid and CO_2 dissolution leads to a small increase in the density of the aqueous phase.This situation results in the creation of negative buoyancy force for downward density-driven natural convection and consequently enhances CO_2 sequestration.In order to study CO_2 injection at pore-level,an isothermal Lattice Boltzmann Model(LBM) with two distribution functions is adopted to simulate density-driven natural convection in porous media with irregular geometry obtained by image treatment.The present analysis showed that after the onset of natural convection instability,the brine with a high CO_2 concentration infringed into the underlying unaffected brine,in favor of the migration of CO_2 into the pore structure.With low Rayleigh numbers,the instantaneous mass flux and total dissolved CO_2 mass are very close to that derived from penetration theory(diffusion only),but the fluxes are significantly enhanced with high Ra number.The simulated results show that as the time increases,some chaotic and recirculation zones in the flow appear obviously,which promotes the renewal of interfacial liquid,and hence enhances dissolution of CO_2 into brine.This study is focused on the scale of a few pores,but shows implications in enhanced oil/gas recovery with CO_2 sequestration in aquifers.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50588201)the National Basic Research Program of China (Grant No. 2007CB616906)
文摘Based on the density functional theory (DFT), using the scheme of the linearized augmented plane wave and the improved local orbital (APW + lo), the structure, the electronic bands and the magnetism of superconducting compounds Cax-xKxFe2As2 (x = 0, 0.25, 0.5, 0.75, 1) are optimized and calculated. The calculation results indicate that with K-doping the lengths of the a, b axes can decrease, and the length of the c axis, the volume, the energy of spin-down valence bands, and the DOS at the Fermi level can increase, which leads the magnetic moment of the system to increase.
基金Project supported by the National Key Research and Development of China (Grant Nos.2018YFA0704200 and 2021YFA1401800)the National Natural Science Foundation of China (Grant Nos.12074414 and 11774402)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDB25000000)。
文摘We report systematic studies on superconducting properties of the Laves phase superconductor ZrIr_(2).It crystallizes in a C15-type(cubic MgCu_(2)-type,space group Fd3m)structure in which the Ir atoms form a kagome lattice,with cell parameters a=b=c=7.3596(1)?.Resistivity and magnetic susceptibility measurements indicate that ZrIr_(2) is a type-Ⅱsuperconductor with a transition temperature of 4.0 K.The estimated lower and upper critical fields are 12.8 mT and 4.78 T,respectively.Heat capacity measurements confirm the bulk superconductivity in ZrIr_(2).ZrIr_(2) is found to possibly host strong-coupled s-wave superconductivity with the normalized specific heat change△C_(e)/γT_(c)~1.86 and the coupling strength△_(0)/k_BT_(c)~1.92.First-principles calculations suggest that ZrIr_(2) has three-dimensional Fermi surfaces with simple topologies,and the states at Fermi level mainly originate from the Ir-5d and Zr-4d orbitals.Similar to SrIr_(2) and ThIr_(2),spin–orbit coupling has dramatic influences on the band structure in ZrIr_(2).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U22A6005,U2032204,and 12104492)the Guangdong Major Scientific Research Project(Grant No.2018KZDXM061)+3 种基金the National Key Research and Development Program of China(Grant No.2021YFA1400401)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB33010000)the K.C.Wong Education Foundation(Grant No.GJTD-2018-01)the Informatization Plan of Chinese Academy of Sciences(Grant No.CAS-WX2021SF0102)。
文摘Single crystals of CeMn_(0.85)Sb_(2) have been successfully synthesized by using the Bi as flux.Analysis of single crystal x-ray diffraction data confirms that CeMn_(0.85)Sb_(2) crystallizes in the HfCuSi_(2)-type structure with the space group P4/nmm(No.129).In the case of H‖c,CeMn_(0.85)Sb_(2) displays a robust antiferromagnetic transition at~160 K for Mn-sublattice,and there is no sign of magnetic order regarding Ce-sublattice.In the case of the Mn-sublattice shows signs of magnetic order at 160 K and 116 K,indicating a possible spin reorientation.There is no sign of magnetic order for the Cesublattice either,but,alternating current magnetic susceptibility measurements reveal a spin glass state below 18 K in the case of H⊥c.Isothermal magnetization curves measured below magnetic order with H⊥c show saturation and even large hysteresis at 2 K,indicating the presence of a ferromagnetic component.In addition,a field-induced spin-flop transition is observed in the case of H⊥c,indicating a field-induced spin reorientation of Mn spins.Electrical resistivity measurements indicate a metallic nature for CeMn_(0.85)Sb_(2) and large anisotropy which is consistent with its quasi-two-dimensional layered structure.
文摘To understand the effect of the doping amount of Cu^2+ on the structure and reactivity of SnO2 in NOx-SCR with NH3, a series of Sn-Cu-O binary oxide catalysts with different Sn/Cu ratios have been prepared and thoroughly characterized. Using the XRD extrapolation method, the SnO2 lattice capacity for Cu^2+ cations is determined at 0.10 g Cu O per g of SnO2, equaling a Sn/Cu molar ratio of 84/16. Therefore, in a tetragonal rutile SnO2 lattice, only a maximum of 16% of the Sn4+ cations can be replaced by Cu^2+ to form a stable solid solution structure. If the Cu content is higher, Cu O will form on the catalyst surface, which has a negative effect on the reaction performance. For samples in a pure solid solution phase, the number of surface defects increase with increasing Cu content until it reaches the lattice capacity, as confirmed by Raman spectroscopy. As a result, the amounts of both active oxygen species and acidic sites on the surface, which critically determine the reaction performance, also increase and reach the maximum level for the catalyst with a Cu content close to the lattice capacity. A distinct lattice capacity threshold effect on the structure and reactivity of Sn-Cu binary oxide catalysts has been observed. A Sn-Cu catalyst with the best reaction performance can be obtained by doping the SnO2 matrix with the lattice capacity amount of Cu^2+.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.50971101 and 51074127)the Research Fund of the State Key Laboratory of Solidification Processing(NPU)of China(Grant No.SKLSP201010)
文摘We present a variational density-functional perturbation theory (DFPT) to investigate the lattice dynamics and vibra- tional properties of single crystal bismuth telluride material. The phonon dispersion curves and phonon density of states (DOS) of the material were obtained. The phonon dispersions are divided into two fields by a phonon gap. In the lower field, atomic vibrations of both Bi and Te contribute to the DOS. In the higher field, most contributions come from Te atoms. The calculated Born effective charges and dielectric constants reveal a great anisotropy in the crystal. The largest Born effective charge generates a significant dynamic charge transferring along the c axis. By DFPT calculation, the greatest LO-TO splitting takes place in the infrared phonon modes and reaches 1.7 THz in the Brillouin zone center. The Raman spectra and peaks corresponding to respective atomic vibration modes were found to be in good agreement with the experimental data.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 51788104, 11604366, 11774192, and 11634007)the National Key R&D Program of China (Grant Nos. 2017YFA0304600 and 2018YFA0305603)。
文摘Two-dimensional honeycomb crystals have inspired intense research interest for their novel properties and great potential in electronics and optoelectronics. Here, through molecular beam epitaxy on SrTiO_3(001), we report successful epitaxial growth of metal-rich chalcogenide Fe_(2)Te, a honeycomb-structured film that has no direct bulk analogue, under Te-limited growth conditions. The structural morphology and electronic properties of Fe_(2)Te are explored with scanning tunneling microscopy and angle resolved photoemission spectroscopy, which reveal electronic bands cross the Fermi level and nearly flat bands. Moreover, we find a weak interfacial interaction between Fe_(2)Te and the underlying substrates, paving a newly developed alternative avenue for honeycomb-based electronic devices.
基金supported by the National Key R&D Program of China(Grant Nos.2021YFA1400900,2021YFA0718300,and 2021YFA1400243)the National Natural Science Foundation of China(Grant No.61835013)。
文摘We investigate the SU(2)gauge effects on bilayer honeycomb lattice thoroughly.We discover a topological Lifshitz transition induced by the non-Abelian gauge potential.Topological Lifshitz transitions are determined by topologies of Fermi surfaces in the momentum space.Fermi surface consists of N=8 Dirac points atπ-flux point instead of N=4 in the trivial Abelian regimes.A local winding number is defined to classify the universality class of the gapless excitations.We also obtain the phase diagram of gauge fluxes by solving the secular equation.Furthermore,the novel edge states of biased bilayer nanoribbon with gauge fluxes are also investigated.
基金supported by the National Natural Science Foundation of China (NSFC) (52171206, 51762013)the Key Project of Hebei Natural Science Foundation (E20202201030)+5 种基金the BeijingTianjin-Hebei Collaborative Innovation Community Construction Project (21344301D)The Second Batch of Young Talent of Hebei Province (70280016160250, 70280011808)the Key Fund in Hebei Province Department of Education China (ZD2021014)The Central Government Guide Local Funding Projects for Scientific and Technological Development (216Z4404G, 206Z4402G)the Interdisciplinary Research Program of Natural Science of Hebei University (DXK202107)the China Postdoctoral Science Foundation (No. 2021M701718)。
文摘The development of high-efficiency and cost-effective bifunctional electrocatalysts for overall water splitting remains a formidable challenge.Herein,FeNi-Nd_(2)O_(3) nanoparticles anchored on N-doped carbon nanotubes(FeNi-Nd_(2)O_(3)/NCN) are designed for highly effective overall water splitting via a facile two-step hydrothermal approach.The synthetic FeNi-Nd_(2)O_(3) hetero-trimers(Fe 2p-Ni 2p-Nd 3d orbital coupling)on NCN achieve excellent oxygen evolution reaction(OER) and hydrogen evolution reaction(HER) activities with overpotentials of 270 and 120 mV at 10 mA cm^(-2) in 1 M KOH solution.Moreover,a small voltage of 1.52 V at 10 mA cm^(-2) is achieved when FeNi-Nd_(2)O_(3)/NCN is assessed as bifunctional catalyst for overall water splitting,which is superior to the typically integrated Pt/C and RuO_(2) counterparts(1.54 V at 10 mA cm^(-2)).The related characterizations including X-ray absorption fine structure(XAFS)spectroscopy show that the remarkably improved activity is originated from Nd_(2)O_(3)-induced FeNi bimetallic lattice contraction.Furthermore,density functional theory(DFT) calculations indicate that the lattice contraction reduces binding energies of intermediates by downshifting the position of FeNi bimetallic d-band center relative to the Fermi level to optimize catalytic performance.Therefore,the Nd_(2)O_(3)-induced FeNi bimetallic lattice contraction may provide a new perspective for designing and synthesizing innovative catalytic systems.