当前工业指针式仪表读数过程中存在特殊环境下依赖人工和推理精度低等问题,本文提出一种基于改进U2-Net的指针式仪表读数方法。针对目前仪表识别算法推理精度差和模型参数数量过多的问题,将U2-Net编码阶段的RSU4和RSU5的最深层的两个卷...当前工业指针式仪表读数过程中存在特殊环境下依赖人工和推理精度低等问题,本文提出一种基于改进U2-Net的指针式仪表读数方法。针对目前仪表识别算法推理精度差和模型参数数量过多的问题,将U2-Net编码阶段的RSU4和RSU5的最深层的两个卷积更换成深度可分离卷积,并在每个RSU的编码阶段后加入了ECA注意力模块,使模型更好地关注指针和刻度区域,提高指针和刻度的识别精度。本文在收集到的数据集上进行评估,通过对比实验表明,相较于SegNet、Deeplabv3+及U2-Net方法,本文改进的模型查准率达到94.58%,针对两种量程25 MPa和1.6 MPa的压力仪表读数引用误差达到1.012%,具有较好的性能表现。At present, there are some problems in the reading process of industrial pointer instruments, such as relying on manual work and low reasoning accuracy. This paper proposes a reading method for pointer instruments based on improved U2-Net. Aiming at the problems of poor reasoning accuracy and too many model parameters in the current instrument identification algorithm, the deepest two convolutions of RSU4 and RSU5 in the U2-Net coding stage are replaced by deep separable convolutions, and the ECA attention module is added after each RSU coding stage, which made the model pay more attention to the pointer and scale area and improved the recognition accuracy of pointer and scale. In this paper, the collected data sets are evaluated. Compared with SegNet, Deeplabv3+ and U2-Net methods, the accuracy of the improved model in this paper reaches 94.58%, and the reference error of pressure instruments with two measuring ranges of 25 MPa and 1.6 MPa reaches 1.012%, which has good performance.展开更多
文摘当前工业指针式仪表读数过程中存在特殊环境下依赖人工和推理精度低等问题,本文提出一种基于改进U2-Net的指针式仪表读数方法。针对目前仪表识别算法推理精度差和模型参数数量过多的问题,将U2-Net编码阶段的RSU4和RSU5的最深层的两个卷积更换成深度可分离卷积,并在每个RSU的编码阶段后加入了ECA注意力模块,使模型更好地关注指针和刻度区域,提高指针和刻度的识别精度。本文在收集到的数据集上进行评估,通过对比实验表明,相较于SegNet、Deeplabv3+及U2-Net方法,本文改进的模型查准率达到94.58%,针对两种量程25 MPa和1.6 MPa的压力仪表读数引用误差达到1.012%,具有较好的性能表现。At present, there are some problems in the reading process of industrial pointer instruments, such as relying on manual work and low reasoning accuracy. This paper proposes a reading method for pointer instruments based on improved U2-Net. Aiming at the problems of poor reasoning accuracy and too many model parameters in the current instrument identification algorithm, the deepest two convolutions of RSU4 and RSU5 in the U2-Net coding stage are replaced by deep separable convolutions, and the ECA attention module is added after each RSU coding stage, which made the model pay more attention to the pointer and scale area and improved the recognition accuracy of pointer and scale. In this paper, the collected data sets are evaluated. Compared with SegNet, Deeplabv3+ and U2-Net methods, the accuracy of the improved model in this paper reaches 94.58%, and the reference error of pressure instruments with two measuring ranges of 25 MPa and 1.6 MPa reaches 1.012%, which has good performance.