The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain functio...The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain function and encoding behaviors associated with emotions.Specifically, astrocytes in the basolateral amygdala have been found to play a role in the modulation of anxiety-like behaviors triggered by chronic stress. Nevertheless, the precise molecular mechanisms by which basolateral amygdala astrocytes regulate chronic stress–induced anxiety-like behaviors remain to be fully elucidated. In this study, we found that in a mouse model of anxiety triggered by unpredictable chronic mild stress, the expression of excitatory amino acid transporter 2 was upregulated in the basolateral amygdala. Interestingly, our findings indicate that the targeted knockdown of excitatory amino acid transporter 2 specifically within the basolateral amygdala astrocytes was able to rescue the anxiety-like behavior in mice subjected to stress. Furthermore, we found that the overexpression of excitatory amino acid transporter 2 in the basolateral amygdala, whether achieved through intracranial administration of excitatory amino acid transporter 2agonists or through injection of excitatory amino acid transporter 2-overexpressing viruses with GfaABC1D promoters, evoked anxiety-like behavior in mice. Our single-nucleus RNA sequencing analysis further confirmed that chronic stress induced an upregulation of excitatory amino acid transporter 2 specifically in astrocytes in the basolateral amygdala. Moreover, through in vivo calcium signal recordings, we found that the frequency of calcium activity in the basolateral amygdala of mice subjected to chronic stress was higher compared with normal mice.After knocking down the expression of excitatory amino acid transporter 2 in the basolateral amygdala, the frequency of calcium activity was not significantly increased, and anxiety-like behavior was obviously mitigated. Additionally, administration of an excitatory amino acid transporter 2 inhibitor in the basolateral amygdala yielded a notable reduction in anxiety level among mice subjected to stress. These results suggest that basolateral amygdala astrocytic excitatory amino acid transporter 2 plays a role in in the regulation of unpredictable chronic mild stress-induced anxiety-like behavior by impacting the activity of local glutamatergic neurons, and targeting excitatory amino acid transporter 2 in the basolateral amygdala holds therapeutic promise for addressing anxiety disorders.展开更多
Previous research reported litchi thaumatin-like protein(LcTLP)could lead to inflammation,which is a factor causing the adverse reactions after excessive intake of litchi.As a main amino acid in litchi pulp,γ-aminobu...Previous research reported litchi thaumatin-like protein(LcTLP)could lead to inflammation,which is a factor causing the adverse reactions after excessive intake of litchi.As a main amino acid in litchi pulp,γ-aminobutyric acid(GABA)was found with anti-inflammatory effect.Therefore,this study aimed to investigate the effects of GABA on LcTLP-induced inflammation through RAW264.7 macrophages and C57BL mice models.In vitro study showed GABA could effectively regulate the level of inflammatory cytokines(interleukin(IL)-1β,IL-6,IL-10,and prostaglandin E2)and Ca2+in cells,and inhibit the phosphorylation of p65,IκB,p38,c-Jun N-terminal kinase(JNK)and extracellular signal-regulated kinase(ERK).These results indicate GABA alleviated inflammation through nuclear factor-κB and mitogen-activated protein kinase pathway signaling pathways.In vivo experiment was performed to verify the anti-inflammatory effect of GABA,and the results demonstrated that GABA reduced the inflammation and oxidative stress in the liver of LcTLP-treated mice,as it down-regulated the pro-inflammatory cytokines,malondialdehyde,aspartate transferase,and alanine transaminase.The relative expression of phosphorylated p38,JNK and ERK in mice liver with GABA treatment were reduced to 65%,39%and 80%of the control group,respectively.Furthermore,GABA treatment enriched probiotic bacteria and decreased pathogenic bacteria in mice gut,which reveals GABA could effectively reduce the translocation of gut microbiota.展开更多
Cold stress adversely affects rice growth,particularly at the early vegetative growth stage.In higher plants,nitrogen metabolism plays a central role in amino acid metabolism,plant defense mechanisms and productivity....Cold stress adversely affects rice growth,particularly at the early vegetative growth stage.In higher plants,nitrogen metabolism plays a central role in amino acid metabolism,plant defense mechanisms and productivity.This report investigated the effects of cold stress and supplementalγ-aminobutyric acid(GABA)under cold stress on nitrogen metabolism in rice seedlings.Cold stress resulted in a greater increase in the transformation to NH_(4)^(+)by nitrate reductase(NR)in roots,it further resulted in lower levels of NO_(3)^(-)content in roots,weakened glutamine glutamate(GOGAT/GS)pathway and elevated glutamate dehydrogenase(GDH)pathway of rice seedlings.Whereas,compared with cold stress,supplementation of GABA(2.5 mmol·L^(-1))could increase relative water content(79.43%)and biomass(34.15%)of rice seedlings.GABA could act as an amplifier of stress signal conduction/transduction to increase NR activity and promote NO_(3)^(-)assimilation in leaves.In addition,GABA elicited the Ca^(2+)signaling pathway which could promote the GDH pathway and GABA shunt,increase the activities of GS and GDH,and the expression of OsGAD2 and OsGDH family.The GABA might increase the ratio of the Glu family and avoid NH4+toxicity in order to raise the concentration of organic compounds and alleviate the harmful consequences of cold stress.Based on these observations,this study proposed that GABA mediated cold tolerance in rice seedlings by activating Ca^(2+)burst and subsequent crosstalk among Ca^(2+)signaling,GDH pathway and GABA shunt.展开更多
The γ-aminobutyric acid neurotransmitter in the spinal cord dorsal horn plays an important role in pain modulation through primary afferent-mediated presynaptic inhibition. The weakening of γ-aminobutyric acid-media...The γ-aminobutyric acid neurotransmitter in the spinal cord dorsal horn plays an important role in pain modulation through primary afferent-mediated presynaptic inhibition. The weakening of γ-aminobutyric acid-mediated presynaptic inhibition may be an important cause of neuropathic pain. γ-aminobutyric acid-mediated presynaptic inhibition is related to the current strength of γ-aminobutyric acid A receptor activation. In view of this, the whole-cell patch-clamp technique was used here to record the change in muscimol activated current of dorsal root ganglion neurons in a chronic constriction injury model. Results found that damage in rat dorsal root ganglion neurons following application of muscimol caused concentration-dependent activation of current, and compared with the sham group, its current strength and γ-aminobutyric acid A receptor protein expression decreased. Immunofluorescence revealed that γ-aminobutyric acid type A receptor α2 subunit protein expression decreased and was most obvious at 12 and 15 days after modeling. Our experimental findings confirmed that the y-aminobutyric acid type A receptor α2 subunit in the chronic constriction injury model rat dorsal root ganglion was downregulated, which may be one of the reasons for the reduction of injury in dorsal root ganglion neurons following muscimol-activated currents.展开更多
BACKGROUND: Studies have demonstrated that in vitro cultured cortical neurons from embryonic rats can produce spontaneous recurrent epileptiform discharges following transient Mg^2+-free extracellular solution cultu...BACKGROUND: Studies have demonstrated that in vitro cultured cortical neurons from embryonic rats can produce spontaneous recurrent epileptiform discharges following transient Mg^2+-free extracellular solution culture. OBJECTIVE: To explore gammaminobutyric acid A receptor (GABAAR)γ 2 subunit expression following Mg^2+-free-induced seizures in cultured developing neurons. DESIGN, TIME AND SETTING: Cellular and molecular biology. The in vitro experiment was performed at the Department of Pediatrics, Second Xiangya Hospital of Central Southern University between January 2007 and February 2008. MATERIALS: Cortical neurons of Wistar rats on gestational days 16-17 were used. Normal extracellular solution (pH 7.3) consisted of NaCl 145 mmol/L, KCl 2.5 mmol/L, HEPES l0 mmol/L, MgC12 1 mmol/L, CaC12 2 mmol/L, glucose 10 mmol/L, and glycine 0.01 mmol/L. In addition, there was no MgCl2 in the Mg^2+-free extracellular solution. METHODS: Cortical neurons cultured for 6 days were exposed to normal extracellular solution (control group) and Mg^2+-free media (Mg^2+-free group) respectively for 3 hours, followed by continuous culture in DMEM solution. MAIN OUTCOME MEASURES: On days 1, 7 and 12 after Mg^2+-free treatment, real-time RT-PCR, immunochemistry, and flow cytometry were used to detect GABAAR 3/2 subunit expression. RESULTS: Compared with the control group, GABAAR γ-positive cells decreased significantly on days 1 and 7 after Mg^2+-free treatment (P 〈 0.01), but significantly increased on day 12 (P 〈 0.01 ). GABAAR γ2 subunit mRNA expression decreased significantly at 7 days Mg^2+-free treatment when measured by real-time RT-PCR compared with the control group (P 〈 0.05). CONCLUSION: GABAAR γ2 subunit expression is modified following Mg-free-induced seizures in cultured developing neurons. This indicates the possibility that abnormal GABAA receptor expression might play an important role in development of neuronal injury.展开更多
Objective To investigate whether environmental cues associated with different properties of morphine could regulate the extracellular levels of glutamate and y-aminobutyric acid (GABA) in the hippocampal ventral sub...Objective To investigate whether environmental cues associated with different properties of morphine could regulate the extracellular levels of glutamate and y-aminobutyric acid (GABA) in the hippocampal ventral subiculum, which play a critical role in the reinstatement of drug-seeking behavior induced by environmental cues. Methods Conditioning place preference (CPP) and conditioning place aversion (CPA) models were used to establish environment associated with rewarding and aversive properties of morphine respectively. Microdialysis and high performance liquid chromatography were used to measure the extracelluar level of glutamate and GABA in the ventral subiculum under these environmental cues. Results Exposure to the environmental cues associated with rewarding properties of morphine resulted in a decrease (approximately 11%) of extracellular level of GABA in ventral subiculum, and exposure to the environmental cues associated with aversive properties of morphine resulted in an increase (approximately 230%) of extracellular level of glutamate in ventral subiculum. Conclusion Environmental cues associated with different properties of morphine modulate the release of distinct neurotransmitters in the hippocampal ventral subiculum possibly through different neural circuit.展开更多
Objective To observe the effects of y-aminobutyric acid (GABA) on the electric activities of pain-excited neurons (PEN) in nucleus accumbens (NAc) in central nervous system (CNS) of morphine-dependent rats. Me...Objective To observe the effects of y-aminobutyric acid (GABA) on the electric activities of pain-excited neurons (PEN) in nucleus accumbens (NAc) in central nervous system (CNS) of morphine-dependent rats. Methods After GABA or the GABAA-receptor antagonist, bicuculline (Bic), was injected into cerebral ventricles or NAc, right sciatic nerve was stimulated by electrical pulses, which was considered as traumatic pain stimulation. Extracellular recordings methods were used to record the electric activities of PEN in NAc. Results When GABA was injected into intracerebroventricle (ICV) as well as NAc, it could decrease the pain-evoked discharge frequency and prolong the latency of PEN. Bic could interdict the above effects of GABA on the electric activities of PEN. Conclusion Exogenous GABA might have an inhibitory effect on the central pain adjustment. Furthermore, GABA and GABAA receptor participate and mediate the traumatic information transmission process in CNS.展开更多
芝麻是八大类食物过敏原之一,快速准确识别芝麻过敏原对预防其过敏有重要意义。核酸适配体可以高效识别靶标过敏原,在过敏原检测中有良好的应用前景。为了获得芝麻主要过敏原Ses i 2的特异性核酸适体,本研究以Ses i 2为靶标,通过磁珠筛...芝麻是八大类食物过敏原之一,快速准确识别芝麻过敏原对预防其过敏有重要意义。核酸适配体可以高效识别靶标过敏原,在过敏原检测中有良好的应用前景。为了获得芝麻主要过敏原Ses i 2的特异性核酸适体,本研究以Ses i 2为靶标,通过磁珠筛选法(磁珠-SELEX)开展10轮筛选,经由高通量测序获得6条候补序列(S1~S6),并进行家族性、同源性分析及二级结构预测。结果表明,6条候选核酸适体的重复率可达46.38%,其自由能在-9.02到-2.47 kcal·moL^(-1)之间,根据自由能能量稳定原则,S1和S5吉布斯自由能最低最稳定,分别为-6.70和-9.02 kcal·moL^(-1)。利用ELISA试验进行亲和力测试,结果表明核酸适体S1和S2的亲和能力较强,S1:KD=67.02 nmol·L^(-1),R2=0.925 8,S2:KD=97.65 nmol·L^(-1),R2=0.795 1。核酸适体S1与过敏原Ses i 2的结合力和其他过敏原蛋白相比有显著差异,可视为具有特异性。本研究最终获得一条兼具良好亲和力和特异性的核酸适体S1,为芝麻过敏原快速检测提供了技术支撑。展开更多
The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving c...The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving carbon neutrality is the utilization of CO_(2) under economic and sustainable conditions.Recently,the strong need for carbon neutrality has led to a proliferation of studies on the direct conversion of CO_(2) into carboxylic acids,which can effectively alleviate CO_(2) emissions and create high-value chemicals.The purpose of this review is to present the application prospects of carboxylic acids and the basic principles of CO_(2) conversion into carboxylic acids through photo-,electric-,and thermal catalysis.Special attention is focused on the regulation strategy of the activity of abundant catalysts at the molecular level,inspiring the preparation of high-performance catalysts.In addition,theoretical calculations,advanced technologies,and numerous typical examples are introduced to elaborate on the corresponding process and influencing factors of catalytic activity.Finally,challenges and prospects are provided for the future development of this field.It is hoped that this review will contribute to a deeper understanding of the conversion of CO_(2) into carboxylic acids and inspire more innovative breakthroughs.展开更多
Melatonin and gamma-aminobutyric acid(GABA) have been shown to regulate sleep. The nocturnal concentrations of melatonin, GABA and total antioxidants may relate to insomnia in stroke patients. In this prospective si...Melatonin and gamma-aminobutyric acid(GABA) have been shown to regulate sleep. The nocturnal concentrations of melatonin, GABA and total antioxidants may relate to insomnia in stroke patients. In this prospective single-center non-randomized controlled clinical trial performed in the China Rehabilitation Research Center, we analyzed the relationship of nocturnal concentrations of melatonin, GABA and total antioxidants with insomnia after stroke. Patients during rehabilitation of stroke were recruited and assigned to the insomnia group or non-insomnia group. Simultaneously, persons without stroke or insomnia served as normal controls. Each group contained 25 cases. The primary outcome was nocturnal concentrations of melatonin, GABA and total antioxidants in peripheral blood. The secondary outcomes were Pittsburgh Sleep Quality Index, Insomnia Severity Index, Epworth Sleepiness Scale, Fatigue Severity Scale, Morningness-Eveningness Questionnaire(Chinese version), and National Institute of Health Stroke Scale. The relationship of nocturnal concentrations of melatonin, GABA and total antioxidants with insomnia after stroke was analyzed and showed that they were lower in the insomnia group than in the non-insomnia group. The severity of stroke was higher in the insomnia group than in the non-insomnia group. Correlation analysis demonstrated that the nocturnal concentrations of melatonin and GABA were associated with insomnia after stroke. This trial was registered at Clinical Trials.gov, identifier: NCT03202121.展开更多
γ-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter, and the GABAergic synaptic transmission is normally terminated by the rapid uptake through GABA transporters. With transgenic mice ubiquitously...γ-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter, and the GABAergic synaptic transmission is normally terminated by the rapid uptake through GABA transporters. With transgenic mice ubiquitously overexpressing GABA transporter subtype I (GAT1), the present study explored the pathophysiological role of GAT1 in epileptogenesis. Though displaying no spontaneous seizure activity, these mice exhibit altered electroencephalographic patterns and increased susceptibility to seizure induced by kainic acid. In addition, the GABAA receptor and glutamate transporters are up-regulated in transgenic mice, which perhaps reflects a compensatory or corrective change to the elevated level of GAT1. These preliminary findings support the hypothesis that excitatory and inhibitory neurotransmission, and seizure susceptibility can be altered by neurotransmitter transporters.展开更多
γ-Aminobutyric acid and GABAergic receptors were previously reported to be distributed in reproductive systems besides CNS and predicted to participate in the modulation of testicular function. γ-Aminobutyric acid t...γ-Aminobutyric acid and GABAergic receptors were previously reported to be distributed in reproductive systems besides CNS and predicted to participate in the modulation of testicular function. γ-Aminobutyric acid transporter was implicated to be involved in this process. However, the potential role of γ-aminobutyric transporter in testis has not been explored. In this study, we investigated the existence of mouse γ-aminobutyric acid transporter subtype I (mGAT1) in testis. Wild-type and transgenic mice, which overexpressing mGAT1 in a variety of tissues, especially in testis, were primarily studied to approach the profile of mGAT1 in testis. Mice with overexpressed mGAT1 develop normally but with reduced mass and size of testis as compared with wild-type. Testicular morphology of transgenic mice exhibited overt abnormalities including focal damage of the spermatogenic epithelium accompanied by capillaries proliferation and increased diameter of seminiferous tubules lumen. Reduced number of spermatids was also found in some seminiferous tubules. Our results clearly demonstrate the presence of GAT1 in mouse testis and imply that GAT1 is possibly involved in testicular function.展开更多
Objective:The present study aimed to investigate the effect of seasonal variation on neurotransmitter release in the hippocampus of normal rats and rats with pineal excision.Methods:Two time points,the summer and wint...Objective:The present study aimed to investigate the effect of seasonal variation on neurotransmitter release in the hippocampus of normal rats and rats with pineal excision.Methods:Two time points,the summer and winter solstice,which are the longest and shortest days of the year,respectively,were selected.Male Spraguee Dawley rats that underwent a sham operation without pineal excision were included as a control group.The concentrations of 5-hydroxytryptamine(5-HT)andγ-aminobutyric acid(GABA)were determined by radioimmunoassays and enzyme-linked immunosorbent assays,respectively.Results:In the winter,the 5-HT and GABA levels in normal rats exhibited a significant difference compared with those in the operation group(P<.01).A difference was also noted in GABA levels between the normal group and the sham operation group(P<.05).The concentrations of 5-HT and GABA in the hippocampal tissues of the normal group exhibited a seasonal rhythm consisting of elevation during the summer and reduction during the winter(P<.01),while the GABA levels in the sham operation group exhibited a significant difference,with elevation during the summer and reduction during the winter(P<.01).In the operation group,GABA showed the same trend(P<.01).Conclusion:The seasonal rhythm of neurotransmitter secretion by the hippocampus(5-HT and GABA)consisted of elevation during the summer and reduction during the winter.During the winter,the pineal gland exhibited a reverse regulatory effect on the secretion of 5-HT and GABA in the hippocampus,and it exhibited seasonal selectivity with regard to the regulation of 5-HT.展开更多
Near-infrared spectroscopy (NIRS) with its fast and nondestructive advantages can be qualified for the real-time quantitative analysis. This paper demonstrates that NIRS combined with partial least squares (PLS) r...Near-infrared spectroscopy (NIRS) with its fast and nondestructive advantages can be qualified for the real-time quantitative analysis. This paper demonstrates that NIRS combined with partial least squares (PLS) regression can be used as a rapid analytical method to simultaneously quantify L-glutamic acid (L- GIu) and γ-aminobutyric acid (GABA) in a biotransformation process and to guide the optimization of production conditions when the merits of NIRS are combined with response surface methodology. The high performance liquid chromatography (HPLC) reference analysis was performed by the o-phthaldialdehyde pre-column derivatization. NIRS measurements of two batches of 141 samples were firstly analyzed by PLS with several spectral pre-processing methods. Compared with those of the HPLC reference analysis, the resulting determination coefficients (R2), root mean square error of prediction (RMSEP) and residual predictive deviation (RPD) of the external validation for the L-GIu concentration were 99.5%, 1.62 g/L, and 11.3, respectively. For the GABA concentration, R2, RMSEP, and RPD were 99.8%, 4.00 g/L, and 16.4, respectively. This NIRS model was then used to optimize the biotransformation process through a Box- Behnken experimental design. Under the optimal conditions without pH adjustment, 200 gjL L-GIu could be catalyzed by 7148 U/L glutamate decarboxylase (GAD) to GABA, reaching 99% conversion at the fifth hour. NIRS analysis provided timely information on the conversion from L-GIu to GABA. The results suggest that the NIRS model can not only be used for the routine profiling of enzymatic conversion, providing a simple and effective method of monitoring the biotransformation process of GABA, but also be considered to be an optimal tool to guide the optimization of production conditions.展开更多
To investigate the effect of propofol on the release of glutamate and γ-aminobutyric acid (GABA) from rat hippocampal synatosomes, synaptosomes was made from hippocampus and incubated with artificial cerebrospinal ...To investigate the effect of propofol on the release of glutamate and γ-aminobutyric acid (GABA) from rat hippocampal synatosomes, synaptosomes was made from hippocampus and incubated with artificial cerebrospinal fluid (aCSF). With the experiment of Ca^2+-dependent release of glutamate and GABA, dihydrokainic acid (DHK) and nipectic acid were added into aCSF. For the observation of Ca^2+-independent release of glutamate and GABA, no DHK, nipectic acid and Ca^2+ were added from aCSF. The release of glutamate and GABA were evoked by 20 μmol/L veratridine or 30 mmol/L KCh The concentration of glutamate and GABA in aCSF was measured by using high-performance liquid chromatography (HPLC). 30, 100 arid 300 μmol/L propofol significantly inhibited veratridine-evoked Ca^2+-dependent release of glutamate and GABA (P〈0. 01 or P〈0. 05), However, propofol showed no effect on elevated KCl-evoked Ca^2+-dependent release of glutamate and GABA (P〉0, 05), Veratridine or elevated KCI evoked Ca^2+-independent release of glutamate and GABA was not affected significantly by propofol (P〉0.05). Propofol could inhibit Ca^2+- dependent release of glutamate and GABA, However, it has no effect on the Ca^2+-independent release of glutamate and GABA,展开更多
A synergistic solvent extraction system comprising trioctylamine(TOA)and ligands with hydroxyl and carboxyl groups can efficiently recover boric acid(H_(3)BO_(3))and separate boron isotopes.However,the structure of li...A synergistic solvent extraction system comprising trioctylamine(TOA)and ligands with hydroxyl and carboxyl groups can efficiently recover boric acid(H_(3)BO_(3))and separate boron isotopes.However,the structure of ligands might impact H_(3)BO_(3) extraction,boron isotope separation,and solvent loss,which has not been thoroughly investigated.This study initially evaluated the influence of ligand's type,pKa,and substituents on H_(3)BO_(3) extraction efficiency,as well as the impact of the B_((4))-O structure(boron is bound to four oxygen atoms)in the organic phase on isotope separation efficiency.Subsequently,by synthesizing the highly hydrophobic 2-hydroxydodecanoic acid(HYA),the extraction performance and mechanism of the TOA/HYA system were investigated.The findings highlight the superior extraction efficiency when employing di-phenolic hydroxyl,phenolic hydroxyl + carbinol hydroxyl,and alcoholic hydroxyl + carboxyl ligands compared to phenolic hydroxyl + carboxyl,phenolic hydroxyl + ethanol hydroxyl,diol hydroxyl,and dicarboxylic ligands.The organic phase anion complex,exclusively comprising the B_((4))-O structure,enhances isotope separation effectiveness.The TOA/HYA system achieves an 80%single-stage extraction efficiency for H_(3)BO_(3).H_(3)BO_(3) and HYA are extracted into the organic phase at a ratio of 1:2,with the anion complex solely containing the B_((4))-O structure.This study paves the way for the construction of novel boric acid extraction and boron isotope separation systems.展开更多
The stability issue has become one of the main challenges for the commercialization of perovskite solar cells(PSCs).Formamidinium(FA)-based perovskites have shown great promise owing to their improved thermal and mois...The stability issue has become one of the main challenges for the commercialization of perovskite solar cells(PSCs).Formamidinium(FA)-based perovskites have shown great promise owing to their improved thermal and moisture stability.However,these perovskites are suffering from phase transition and separation.Here,a method of incorporating of γ-aminobutyric acid(GABA) and cesium cations into FAPbl_(3) is developed to improve the phase stability.It is demonstrated that the crystallinity of α-FAPbl_(3) phase is greatly improved and the phase transition temperature is significantly dropped.The resultant solar cell therefore obtains a champion power conversion efficiency(PCE) of 23.71%,which is one of the highest efficiencies for methylammonium-free PSCs.Furthermore,it shows an impressively enhanced stability under illumination,exhibiting the great potential of FA-based perovskites for efficient and stable solar cells.展开更多
Atmospheric CO_(2)concentration is elevated globally,which has“CO_(2)fertilization effects”and potentially improves plant photosynthesis,yield,and productivity.Despite the beneficial effect of CO_(2)fertilization be...Atmospheric CO_(2)concentration is elevated globally,which has“CO_(2)fertilization effects”and potentially improves plant photosynthesis,yield,and productivity.Despite the beneficial effect of CO_(2)fertilization being modulated by vapor pressure deficit(VPD),the underlying mechanism is highly uncertain.In the present study,the potential roles of hormones in determining CO_(2)fertilization effects under contrasting high and low VPD conditions were investigated by integrated physiological and transcriptomic analyses.Beneficial CO_(2)fertilization effects were offset under high VPD conditions and were constrained by plant water stress and photosynthetic CO_(2)utilization.High VPD induced a large passive water driving force,which disrupted the water balance and consequently caused plant water deficit.Leaf water potential,turgor pressure,and hydraulic conductance declined under high VPD stress.The physiological evidence combined with transcriptomic analyses demonstrated that abscisic acid(ABA)and jasmonic acid(JA)potentially acted as drought-signaling molecules in response to high VPD stress.Increased foliar ABA and JA content triggered stomatal closure to prevent excessive water loss under high VPD stress,which simultaneously increased the diffusion resistance for CO_(2)uptake from atmosphere to leaf intercellular space.High VPD also significantly increased mesophyll resistance for CO_(2)transport from stomatal cavity to fixation site inside chloroplast.The chloroplast“sink”CO_(2)availability was constrained by stomatal and mesophyll resistance under high VPD stress,despite the atmospheric“source”CO_(2)concentration being elevated.Thus,ABA-and JA-mediated drought-resistant mechanisms potentially modified the beneficial effect of CO_(2)fertilization on photosynthesis,plant growth,and yield productivity.This study provides valuable information for improving the utilization efficiency of CO_(2)fertilization and a better understanding of the physiological processes.展开更多
Urea and oxalic acid are critical component in various chemical manufacturing industries.However,achieving simultaneous generation of urea and oxalic acid in a continuous-flow electrolyzer is a challenge.Herein,we rep...Urea and oxalic acid are critical component in various chemical manufacturing industries.However,achieving simultaneous generation of urea and oxalic acid in a continuous-flow electrolyzer is a challenge.Herein,we report a continuous-flow electrolyzer equipped with 9-square centime-ter-effective area gas diffusion electrodes(GDE)which can simultaneously catalyze the glycerol oxidation reaction in the anode region and the reduction reaction of CO_(2) and nitrate in the cathode region,producing oxalic acid and urea at both the anode and cathode,respectively.The current density at low cell voltage(0.9 V)remained above 18.7 mA cm^(-2) for 10 consecutive electrolysis cycles(120 h in total),and the Faraday efficiency of oxalic acid(67.1%) and urea(70.9%)did not decay.Experimental and theoretical studies show that in terms of the formation of C-N bond at the cathode,Pd-sites can provide protons for the hydrogenation process of CO_(2) and NO_(3)^(-),Cu-sites can promote the generation of *COOH and Bi-sites can stabilize *COOH.In addition,in terms of glycerol oxidation,the introduction of Cu and Bi into Pd metallene promotes the oxidation of hydroxyl groups and the cleavage of C-C bond in glycerol molecules,respectively.展开更多
基金supported by the National Natural Science Foundation of China,Nos.32371070 (to JT),31761163005 (to JT),32100824 (to QX)the Shenzhen Science and Technology Program,Nos.RCBS20210609104606024 (to QX),JCY20210324101813035 (to DL)+4 种基金the Guangdong Provincial Key S&T Program,No.2018B030336001 (to JT)the Key Basic Research Program of Shenzhen Science and Technology Innovation Commission,Nos.JCYJ20200109115405930 (to JT),JCYJ20220818101615033 (to DL),JCYJ20210324115811031 (to QX),JCYJ20200109150717745 (to QX)Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases,No.ZDSYS20220304163558001 (to JT)Guangdong Provincial Key Laboratory of Brain Connectome and Behavior,No.2023B1212060055 (to JT)the China Postdoctoral Science Foundation,No.2021M693298 (to QX)。
文摘The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain function and encoding behaviors associated with emotions.Specifically, astrocytes in the basolateral amygdala have been found to play a role in the modulation of anxiety-like behaviors triggered by chronic stress. Nevertheless, the precise molecular mechanisms by which basolateral amygdala astrocytes regulate chronic stress–induced anxiety-like behaviors remain to be fully elucidated. In this study, we found that in a mouse model of anxiety triggered by unpredictable chronic mild stress, the expression of excitatory amino acid transporter 2 was upregulated in the basolateral amygdala. Interestingly, our findings indicate that the targeted knockdown of excitatory amino acid transporter 2 specifically within the basolateral amygdala astrocytes was able to rescue the anxiety-like behavior in mice subjected to stress. Furthermore, we found that the overexpression of excitatory amino acid transporter 2 in the basolateral amygdala, whether achieved through intracranial administration of excitatory amino acid transporter 2agonists or through injection of excitatory amino acid transporter 2-overexpressing viruses with GfaABC1D promoters, evoked anxiety-like behavior in mice. Our single-nucleus RNA sequencing analysis further confirmed that chronic stress induced an upregulation of excitatory amino acid transporter 2 specifically in astrocytes in the basolateral amygdala. Moreover, through in vivo calcium signal recordings, we found that the frequency of calcium activity in the basolateral amygdala of mice subjected to chronic stress was higher compared with normal mice.After knocking down the expression of excitatory amino acid transporter 2 in the basolateral amygdala, the frequency of calcium activity was not significantly increased, and anxiety-like behavior was obviously mitigated. Additionally, administration of an excitatory amino acid transporter 2 inhibitor in the basolateral amygdala yielded a notable reduction in anxiety level among mice subjected to stress. These results suggest that basolateral amygdala astrocytic excitatory amino acid transporter 2 plays a role in in the regulation of unpredictable chronic mild stress-induced anxiety-like behavior by impacting the activity of local glutamatergic neurons, and targeting excitatory amino acid transporter 2 in the basolateral amygdala holds therapeutic promise for addressing anxiety disorders.
基金supported by China Agriculture Research System of MOF and MARA(CARS-32)the Guangzhou Wanglaoji Lychee Industry Research Project(5100-H220577)+2 种基金the Science and Technology Planning Project of Guangzhou City of China(202103000054)the National Natural Science Foundation of China(32202022)the Dongguan Key R&D Programme(2022120030008).
文摘Previous research reported litchi thaumatin-like protein(LcTLP)could lead to inflammation,which is a factor causing the adverse reactions after excessive intake of litchi.As a main amino acid in litchi pulp,γ-aminobutyric acid(GABA)was found with anti-inflammatory effect.Therefore,this study aimed to investigate the effects of GABA on LcTLP-induced inflammation through RAW264.7 macrophages and C57BL mice models.In vitro study showed GABA could effectively regulate the level of inflammatory cytokines(interleukin(IL)-1β,IL-6,IL-10,and prostaglandin E2)and Ca2+in cells,and inhibit the phosphorylation of p65,IκB,p38,c-Jun N-terminal kinase(JNK)and extracellular signal-regulated kinase(ERK).These results indicate GABA alleviated inflammation through nuclear factor-κB and mitogen-activated protein kinase pathway signaling pathways.In vivo experiment was performed to verify the anti-inflammatory effect of GABA,and the results demonstrated that GABA reduced the inflammation and oxidative stress in the liver of LcTLP-treated mice,as it down-regulated the pro-inflammatory cytokines,malondialdehyde,aspartate transferase,and alanine transaminase.The relative expression of phosphorylated p38,JNK and ERK in mice liver with GABA treatment were reduced to 65%,39%and 80%of the control group,respectively.Furthermore,GABA treatment enriched probiotic bacteria and decreased pathogenic bacteria in mice gut,which reveals GABA could effectively reduce the translocation of gut microbiota.
基金Supported by the National Natural Science Foundation of China(32301935)the Heilongjiang Province Natural Science Foundation Project(LH2020C005)+1 种基金the Postdoctoral Fund to Research Start-up of Heilongjiang Province(LBH-Q21077)Heilongjiang Province Applied Technology Research and Development Plan Project(GA20B101)。
文摘Cold stress adversely affects rice growth,particularly at the early vegetative growth stage.In higher plants,nitrogen metabolism plays a central role in amino acid metabolism,plant defense mechanisms and productivity.This report investigated the effects of cold stress and supplementalγ-aminobutyric acid(GABA)under cold stress on nitrogen metabolism in rice seedlings.Cold stress resulted in a greater increase in the transformation to NH_(4)^(+)by nitrate reductase(NR)in roots,it further resulted in lower levels of NO_(3)^(-)content in roots,weakened glutamine glutamate(GOGAT/GS)pathway and elevated glutamate dehydrogenase(GDH)pathway of rice seedlings.Whereas,compared with cold stress,supplementation of GABA(2.5 mmol·L^(-1))could increase relative water content(79.43%)and biomass(34.15%)of rice seedlings.GABA could act as an amplifier of stress signal conduction/transduction to increase NR activity and promote NO_(3)^(-)assimilation in leaves.In addition,GABA elicited the Ca^(2+)signaling pathway which could promote the GDH pathway and GABA shunt,increase the activities of GS and GDH,and the expression of OsGAD2 and OsGDH family.The GABA might increase the ratio of the Glu family and avoid NH4+toxicity in order to raise the concentration of organic compounds and alleviate the harmful consequences of cold stress.Based on these observations,this study proposed that GABA mediated cold tolerance in rice seedlings by activating Ca^(2+)burst and subsequent crosstalk among Ca^(2+)signaling,GDH pathway and GABA shunt.
基金supported by the Youth Science and Technology Innovation Special Foundation of Xinjiang Production and Construction Corps, China, No. 2010JC33
文摘The γ-aminobutyric acid neurotransmitter in the spinal cord dorsal horn plays an important role in pain modulation through primary afferent-mediated presynaptic inhibition. The weakening of γ-aminobutyric acid-mediated presynaptic inhibition may be an important cause of neuropathic pain. γ-aminobutyric acid-mediated presynaptic inhibition is related to the current strength of γ-aminobutyric acid A receptor activation. In view of this, the whole-cell patch-clamp technique was used here to record the change in muscimol activated current of dorsal root ganglion neurons in a chronic constriction injury model. Results found that damage in rat dorsal root ganglion neurons following application of muscimol caused concentration-dependent activation of current, and compared with the sham group, its current strength and γ-aminobutyric acid A receptor protein expression decreased. Immunofluorescence revealed that γ-aminobutyric acid type A receptor α2 subunit protein expression decreased and was most obvious at 12 and 15 days after modeling. Our experimental findings confirmed that the y-aminobutyric acid type A receptor α2 subunit in the chronic constriction injury model rat dorsal root ganglion was downregulated, which may be one of the reasons for the reduction of injury in dorsal root ganglion neurons following muscimol-activated currents.
基金Supported by National Natural Science Foundation of China(No.3997023939800044)+1 种基金FoundationforUniversityKeyTeacherbytheMinistryofEducationofChinatheNationalProgramofBasicResearchofChina(G1999054000).
基金the National Natural Science Foundation of China,No.30400483
文摘BACKGROUND: Studies have demonstrated that in vitro cultured cortical neurons from embryonic rats can produce spontaneous recurrent epileptiform discharges following transient Mg^2+-free extracellular solution culture. OBJECTIVE: To explore gammaminobutyric acid A receptor (GABAAR)γ 2 subunit expression following Mg^2+-free-induced seizures in cultured developing neurons. DESIGN, TIME AND SETTING: Cellular and molecular biology. The in vitro experiment was performed at the Department of Pediatrics, Second Xiangya Hospital of Central Southern University between January 2007 and February 2008. MATERIALS: Cortical neurons of Wistar rats on gestational days 16-17 were used. Normal extracellular solution (pH 7.3) consisted of NaCl 145 mmol/L, KCl 2.5 mmol/L, HEPES l0 mmol/L, MgC12 1 mmol/L, CaC12 2 mmol/L, glucose 10 mmol/L, and glycine 0.01 mmol/L. In addition, there was no MgCl2 in the Mg^2+-free extracellular solution. METHODS: Cortical neurons cultured for 6 days were exposed to normal extracellular solution (control group) and Mg^2+-free media (Mg^2+-free group) respectively for 3 hours, followed by continuous culture in DMEM solution. MAIN OUTCOME MEASURES: On days 1, 7 and 12 after Mg^2+-free treatment, real-time RT-PCR, immunochemistry, and flow cytometry were used to detect GABAAR 3/2 subunit expression. RESULTS: Compared with the control group, GABAAR γ-positive cells decreased significantly on days 1 and 7 after Mg^2+-free treatment (P 〈 0.01), but significantly increased on day 12 (P 〈 0.01 ). GABAAR γ2 subunit mRNA expression decreased significantly at 7 days Mg^2+-free treatment when measured by real-time RT-PCR compared with the control group (P 〈 0.05). CONCLUSION: GABAAR γ2 subunit expression is modified following Mg-free-induced seizures in cultured developing neurons. This indicates the possibility that abnormal GABAA receptor expression might play an important role in development of neuronal injury.
基金supported by the National Natural Science Foundation of China(No.30230130 and No.30400129)the Ministry of Science and Technology of China(No.2003CB515405,No.2005CB522406)+1 种基金the Program for Changjiang Scholars and Innovative Research Team of Ministry of Education of ChinaShanghai Municipal Commission for Science and Technology(No.06JC14008).
文摘Objective To investigate whether environmental cues associated with different properties of morphine could regulate the extracellular levels of glutamate and y-aminobutyric acid (GABA) in the hippocampal ventral subiculum, which play a critical role in the reinstatement of drug-seeking behavior induced by environmental cues. Methods Conditioning place preference (CPP) and conditioning place aversion (CPA) models were used to establish environment associated with rewarding and aversive properties of morphine respectively. Microdialysis and high performance liquid chromatography were used to measure the extracelluar level of glutamate and GABA in the ventral subiculum under these environmental cues. Results Exposure to the environmental cues associated with rewarding properties of morphine resulted in a decrease (approximately 11%) of extracellular level of GABA in ventral subiculum, and exposure to the environmental cues associated with aversive properties of morphine resulted in an increase (approximately 230%) of extracellular level of glutamate in ventral subiculum. Conclusion Environmental cues associated with different properties of morphine modulate the release of distinct neurotransmitters in the hippocampal ventral subiculum possibly through different neural circuit.
基金the National Natural Science Foundation of China (No. 60601010)the Natural Science Foundation of Heilongjiang Province, China (No. D200606)+1 种基金the Postdoctoral Fund of Heilongjiang province, China (No. LBH-Z06110)the Scientific Re- search Fund of Educational Department of Heilongjiang Province, China (No. 11531112).
文摘Objective To observe the effects of y-aminobutyric acid (GABA) on the electric activities of pain-excited neurons (PEN) in nucleus accumbens (NAc) in central nervous system (CNS) of morphine-dependent rats. Methods After GABA or the GABAA-receptor antagonist, bicuculline (Bic), was injected into cerebral ventricles or NAc, right sciatic nerve was stimulated by electrical pulses, which was considered as traumatic pain stimulation. Extracellular recordings methods were used to record the electric activities of PEN in NAc. Results When GABA was injected into intracerebroventricle (ICV) as well as NAc, it could decrease the pain-evoked discharge frequency and prolong the latency of PEN. Bic could interdict the above effects of GABA on the electric activities of PEN. Conclusion Exogenous GABA might have an inhibitory effect on the central pain adjustment. Furthermore, GABA and GABAA receptor participate and mediate the traumatic information transmission process in CNS.
文摘芝麻是八大类食物过敏原之一,快速准确识别芝麻过敏原对预防其过敏有重要意义。核酸适配体可以高效识别靶标过敏原,在过敏原检测中有良好的应用前景。为了获得芝麻主要过敏原Ses i 2的特异性核酸适体,本研究以Ses i 2为靶标,通过磁珠筛选法(磁珠-SELEX)开展10轮筛选,经由高通量测序获得6条候补序列(S1~S6),并进行家族性、同源性分析及二级结构预测。结果表明,6条候选核酸适体的重复率可达46.38%,其自由能在-9.02到-2.47 kcal·moL^(-1)之间,根据自由能能量稳定原则,S1和S5吉布斯自由能最低最稳定,分别为-6.70和-9.02 kcal·moL^(-1)。利用ELISA试验进行亲和力测试,结果表明核酸适体S1和S2的亲和能力较强,S1:KD=67.02 nmol·L^(-1),R2=0.925 8,S2:KD=97.65 nmol·L^(-1),R2=0.795 1。核酸适体S1与过敏原Ses i 2的结合力和其他过敏原蛋白相比有显著差异,可视为具有特异性。本研究最终获得一条兼具良好亲和力和特异性的核酸适体S1,为芝麻过敏原快速检测提供了技术支撑。
基金financial support from the King Abdullah University of Science and Technology(KAUST).
文摘The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving carbon neutrality is the utilization of CO_(2) under economic and sustainable conditions.Recently,the strong need for carbon neutrality has led to a proliferation of studies on the direct conversion of CO_(2) into carboxylic acids,which can effectively alleviate CO_(2) emissions and create high-value chemicals.The purpose of this review is to present the application prospects of carboxylic acids and the basic principles of CO_(2) conversion into carboxylic acids through photo-,electric-,and thermal catalysis.Special attention is focused on the regulation strategy of the activity of abundant catalysts at the molecular level,inspiring the preparation of high-performance catalysts.In addition,theoretical calculations,advanced technologies,and numerous typical examples are introduced to elaborate on the corresponding process and influencing factors of catalytic activity.Finally,challenges and prospects are provided for the future development of this field.It is hoped that this review will contribute to a deeper understanding of the conversion of CO_(2) into carboxylic acids and inspire more innovative breakthroughs.
基金supported by the Optional Research Project of China Rehabilitation Research Center,No.2014-7the Sub-Project under National“Twelfth Five-Year”Plan for Science&Technology Support Project,No.2011BAI08B11
文摘Melatonin and gamma-aminobutyric acid(GABA) have been shown to regulate sleep. The nocturnal concentrations of melatonin, GABA and total antioxidants may relate to insomnia in stroke patients. In this prospective single-center non-randomized controlled clinical trial performed in the China Rehabilitation Research Center, we analyzed the relationship of nocturnal concentrations of melatonin, GABA and total antioxidants with insomnia after stroke. Patients during rehabilitation of stroke were recruited and assigned to the insomnia group or non-insomnia group. Simultaneously, persons without stroke or insomnia served as normal controls. Each group contained 25 cases. The primary outcome was nocturnal concentrations of melatonin, GABA and total antioxidants in peripheral blood. The secondary outcomes were Pittsburgh Sleep Quality Index, Insomnia Severity Index, Epworth Sleepiness Scale, Fatigue Severity Scale, Morningness-Eveningness Questionnaire(Chinese version), and National Institute of Health Stroke Scale. The relationship of nocturnal concentrations of melatonin, GABA and total antioxidants with insomnia after stroke was analyzed and showed that they were lower in the insomnia group than in the non-insomnia group. The severity of stroke was higher in the insomnia group than in the non-insomnia group. Correlation analysis demonstrated that the nocturnal concentrations of melatonin and GABA were associated with insomnia after stroke. This trial was registered at Clinical Trials.gov, identifier: NCT03202121.
文摘γ-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter, and the GABAergic synaptic transmission is normally terminated by the rapid uptake through GABA transporters. With transgenic mice ubiquitously overexpressing GABA transporter subtype I (GAT1), the present study explored the pathophysiological role of GAT1 in epileptogenesis. Though displaying no spontaneous seizure activity, these mice exhibit altered electroencephalographic patterns and increased susceptibility to seizure induced by kainic acid. In addition, the GABAA receptor and glutamate transporters are up-regulated in transgenic mice, which perhaps reflects a compensatory or corrective change to the elevated level of GAT1. These preliminary findings support the hypothesis that excitatory and inhibitory neurotransmission, and seizure susceptibility can be altered by neurotransmitter transporters.
基金grants from National Science Foundation!No.39630140
文摘γ-Aminobutyric acid and GABAergic receptors were previously reported to be distributed in reproductive systems besides CNS and predicted to participate in the modulation of testicular function. γ-Aminobutyric acid transporter was implicated to be involved in this process. However, the potential role of γ-aminobutyric transporter in testis has not been explored. In this study, we investigated the existence of mouse γ-aminobutyric acid transporter subtype I (mGAT1) in testis. Wild-type and transgenic mice, which overexpressing mGAT1 in a variety of tissues, especially in testis, were primarily studied to approach the profile of mGAT1 in testis. Mice with overexpressed mGAT1 develop normally but with reduced mass and size of testis as compared with wild-type. Testicular morphology of transgenic mice exhibited overt abnormalities including focal damage of the spermatogenic epithelium accompanied by capillaries proliferation and increased diameter of seminiferous tubules lumen. Reduced number of spermatids was also found in some seminiferous tubules. Our results clearly demonstrate the presence of GAT1 in mouse testis and imply that GAT1 is possibly involved in testicular function.
基金the National Natural Science Foundation of China(81774162)。
文摘Objective:The present study aimed to investigate the effect of seasonal variation on neurotransmitter release in the hippocampus of normal rats and rats with pineal excision.Methods:Two time points,the summer and winter solstice,which are the longest and shortest days of the year,respectively,were selected.Male Spraguee Dawley rats that underwent a sham operation without pineal excision were included as a control group.The concentrations of 5-hydroxytryptamine(5-HT)andγ-aminobutyric acid(GABA)were determined by radioimmunoassays and enzyme-linked immunosorbent assays,respectively.Results:In the winter,the 5-HT and GABA levels in normal rats exhibited a significant difference compared with those in the operation group(P<.01).A difference was also noted in GABA levels between the normal group and the sham operation group(P<.05).The concentrations of 5-HT and GABA in the hippocampal tissues of the normal group exhibited a seasonal rhythm consisting of elevation during the summer and reduction during the winter(P<.01),while the GABA levels in the sham operation group exhibited a significant difference,with elevation during the summer and reduction during the winter(P<.01).In the operation group,GABA showed the same trend(P<.01).Conclusion:The seasonal rhythm of neurotransmitter secretion by the hippocampus(5-HT and GABA)consisted of elevation during the summer and reduction during the winter.During the winter,the pineal gland exhibited a reverse regulatory effect on the secretion of 5-HT and GABA in the hippocampus,and it exhibited seasonal selectivity with regard to the regulation of 5-HT.
基金supported by the National Natural Science Foundation of China (Nos. 81374046 and 81373506)
文摘Near-infrared spectroscopy (NIRS) with its fast and nondestructive advantages can be qualified for the real-time quantitative analysis. This paper demonstrates that NIRS combined with partial least squares (PLS) regression can be used as a rapid analytical method to simultaneously quantify L-glutamic acid (L- GIu) and γ-aminobutyric acid (GABA) in a biotransformation process and to guide the optimization of production conditions when the merits of NIRS are combined with response surface methodology. The high performance liquid chromatography (HPLC) reference analysis was performed by the o-phthaldialdehyde pre-column derivatization. NIRS measurements of two batches of 141 samples were firstly analyzed by PLS with several spectral pre-processing methods. Compared with those of the HPLC reference analysis, the resulting determination coefficients (R2), root mean square error of prediction (RMSEP) and residual predictive deviation (RPD) of the external validation for the L-GIu concentration were 99.5%, 1.62 g/L, and 11.3, respectively. For the GABA concentration, R2, RMSEP, and RPD were 99.8%, 4.00 g/L, and 16.4, respectively. This NIRS model was then used to optimize the biotransformation process through a Box- Behnken experimental design. Under the optimal conditions without pH adjustment, 200 gjL L-GIu could be catalyzed by 7148 U/L glutamate decarboxylase (GAD) to GABA, reaching 99% conversion at the fifth hour. NIRS analysis provided timely information on the conversion from L-GIu to GABA. The results suggest that the NIRS model can not only be used for the routine profiling of enzymatic conversion, providing a simple and effective method of monitoring the biotransformation process of GABA, but also be considered to be an optimal tool to guide the optimization of production conditions.
文摘To investigate the effect of propofol on the release of glutamate and γ-aminobutyric acid (GABA) from rat hippocampal synatosomes, synaptosomes was made from hippocampus and incubated with artificial cerebrospinal fluid (aCSF). With the experiment of Ca^2+-dependent release of glutamate and GABA, dihydrokainic acid (DHK) and nipectic acid were added into aCSF. For the observation of Ca^2+-independent release of glutamate and GABA, no DHK, nipectic acid and Ca^2+ were added from aCSF. The release of glutamate and GABA were evoked by 20 μmol/L veratridine or 30 mmol/L KCh The concentration of glutamate and GABA in aCSF was measured by using high-performance liquid chromatography (HPLC). 30, 100 arid 300 μmol/L propofol significantly inhibited veratridine-evoked Ca^2+-dependent release of glutamate and GABA (P〈0. 01 or P〈0. 05), However, propofol showed no effect on elevated KCl-evoked Ca^2+-dependent release of glutamate and GABA (P〉0, 05), Veratridine or elevated KCI evoked Ca^2+-independent release of glutamate and GABA was not affected significantly by propofol (P〉0.05). Propofol could inhibit Ca^2+- dependent release of glutamate and GABA, However, it has no effect on the Ca^2+-independent release of glutamate and GABA,
基金supported by the National Natural Science Foundation of China(22278407,21922814,22138012,22178349)CAS Project for Young Scientists in Basic Research(YSBR-038)+1 种基金National Key Research and Development Program of China(2021YFC2901500,2022YFC2105302)Shandong Energy Institute(SEI U202306).
文摘A synergistic solvent extraction system comprising trioctylamine(TOA)and ligands with hydroxyl and carboxyl groups can efficiently recover boric acid(H_(3)BO_(3))and separate boron isotopes.However,the structure of ligands might impact H_(3)BO_(3) extraction,boron isotope separation,and solvent loss,which has not been thoroughly investigated.This study initially evaluated the influence of ligand's type,pKa,and substituents on H_(3)BO_(3) extraction efficiency,as well as the impact of the B_((4))-O structure(boron is bound to four oxygen atoms)in the organic phase on isotope separation efficiency.Subsequently,by synthesizing the highly hydrophobic 2-hydroxydodecanoic acid(HYA),the extraction performance and mechanism of the TOA/HYA system were investigated.The findings highlight the superior extraction efficiency when employing di-phenolic hydroxyl,phenolic hydroxyl + carbinol hydroxyl,and alcoholic hydroxyl + carboxyl ligands compared to phenolic hydroxyl + carboxyl,phenolic hydroxyl + ethanol hydroxyl,diol hydroxyl,and dicarboxylic ligands.The organic phase anion complex,exclusively comprising the B_((4))-O structure,enhances isotope separation effectiveness.The TOA/HYA system achieves an 80%single-stage extraction efficiency for H_(3)BO_(3).H_(3)BO_(3) and HYA are extracted into the organic phase at a ratio of 1:2,with the anion complex solely containing the B_((4))-O structure.This study paves the way for the construction of novel boric acid extraction and boron isotope separation systems.
基金financial support from the Taishan Scholar Project of Shandong Province under Grant No. tsqn201812098the Shandong Provincial Natural Science Foundation (ZR2020MF103, ZR2019MF057, and ZR2019MA066)+1 种基金National Natural Science Foundation of China (21701080)Postgraduate Research & Practice Innovation Program of Jiangsu Province.
文摘The stability issue has become one of the main challenges for the commercialization of perovskite solar cells(PSCs).Formamidinium(FA)-based perovskites have shown great promise owing to their improved thermal and moisture stability.However,these perovskites are suffering from phase transition and separation.Here,a method of incorporating of γ-aminobutyric acid(GABA) and cesium cations into FAPbl_(3) is developed to improve the phase stability.It is demonstrated that the crystallinity of α-FAPbl_(3) phase is greatly improved and the phase transition temperature is significantly dropped.The resultant solar cell therefore obtains a champion power conversion efficiency(PCE) of 23.71%,which is one of the highest efficiencies for methylammonium-free PSCs.Furthermore,it shows an impressively enhanced stability under illumination,exhibiting the great potential of FA-based perovskites for efficient and stable solar cells.
基金y the National Natural Science Foundation of China(Grant No.32102466)the Major Scientific Innovation Project of Shandong Province(Grant No.2022CXGC020708).
文摘Atmospheric CO_(2)concentration is elevated globally,which has“CO_(2)fertilization effects”and potentially improves plant photosynthesis,yield,and productivity.Despite the beneficial effect of CO_(2)fertilization being modulated by vapor pressure deficit(VPD),the underlying mechanism is highly uncertain.In the present study,the potential roles of hormones in determining CO_(2)fertilization effects under contrasting high and low VPD conditions were investigated by integrated physiological and transcriptomic analyses.Beneficial CO_(2)fertilization effects were offset under high VPD conditions and were constrained by plant water stress and photosynthetic CO_(2)utilization.High VPD induced a large passive water driving force,which disrupted the water balance and consequently caused plant water deficit.Leaf water potential,turgor pressure,and hydraulic conductance declined under high VPD stress.The physiological evidence combined with transcriptomic analyses demonstrated that abscisic acid(ABA)and jasmonic acid(JA)potentially acted as drought-signaling molecules in response to high VPD stress.Increased foliar ABA and JA content triggered stomatal closure to prevent excessive water loss under high VPD stress,which simultaneously increased the diffusion resistance for CO_(2)uptake from atmosphere to leaf intercellular space.High VPD also significantly increased mesophyll resistance for CO_(2)transport from stomatal cavity to fixation site inside chloroplast.The chloroplast“sink”CO_(2)availability was constrained by stomatal and mesophyll resistance under high VPD stress,despite the atmospheric“source”CO_(2)concentration being elevated.Thus,ABA-and JA-mediated drought-resistant mechanisms potentially modified the beneficial effect of CO_(2)fertilization on photosynthesis,plant growth,and yield productivity.This study provides valuable information for improving the utilization efficiency of CO_(2)fertilization and a better understanding of the physiological processes.
文摘Urea and oxalic acid are critical component in various chemical manufacturing industries.However,achieving simultaneous generation of urea and oxalic acid in a continuous-flow electrolyzer is a challenge.Herein,we report a continuous-flow electrolyzer equipped with 9-square centime-ter-effective area gas diffusion electrodes(GDE)which can simultaneously catalyze the glycerol oxidation reaction in the anode region and the reduction reaction of CO_(2) and nitrate in the cathode region,producing oxalic acid and urea at both the anode and cathode,respectively.The current density at low cell voltage(0.9 V)remained above 18.7 mA cm^(-2) for 10 consecutive electrolysis cycles(120 h in total),and the Faraday efficiency of oxalic acid(67.1%) and urea(70.9%)did not decay.Experimental and theoretical studies show that in terms of the formation of C-N bond at the cathode,Pd-sites can provide protons for the hydrogenation process of CO_(2) and NO_(3)^(-),Cu-sites can promote the generation of *COOH and Bi-sites can stabilize *COOH.In addition,in terms of glycerol oxidation,the introduction of Cu and Bi into Pd metallene promotes the oxidation of hydroxyl groups and the cleavage of C-C bond in glycerol molecules,respectively.