Power generators and chemical engineering compressors include heavy and large centrifugal impellers. To produce these impellers in high-speed machining, a 4?-axis milling machine(or a 4-axis machine plus an indexing t...Power generators and chemical engineering compressors include heavy and large centrifugal impellers. To produce these impellers in high-speed machining, a 4?-axis milling machine(or a 4-axis machine plus an indexing table) is often used in the industry, which is more rigid than a5-axis milling machine. Since impeller blades are designed with complex B-spline surfaces and impeller channels spaces vary significantly, it is more efficient to use multiple cutters as large as possible to cut a channel in sections and a blade surface in patches, instead of only using a small cutter to machine a whole blade and a channel. Unfortunately, no approach has been established to automatically calculate the largest diameters of cutters and their paths, which include the indexing table angles. To address this problem, an automated and optimization approach is proposed. Based on the structure of a 4?-axis machine, a geometric model for a cutter gouging/interfering the impeller is formulated, and an optimization model of the cutter diameter in terms of the indexing table angle is established at a cutter contact(CC) point on a blade surface. Then, the diameters of the tools,their orientations, and the indexing table angles are optimized, and each tool's paths are generated for machining its corresponding impeller section. As a test, an impeller is efficiently machined with these tools section by section; thus, this approach is valid. It can be directly used in the industry to improve efficiency of machining centrifugal impellers.展开更多
Based on 3D, steady N-S equations and k-e turbulence model, Fluent was employed to do numerical simulation for lateral aerodynamic performance of 6-axis X2K double-deck container trains with two different loading form...Based on 3D, steady N-S equations and k-e turbulence model, Fluent was employed to do numerical simulation for lateral aerodynamic performance of 6-axis X2K double-deck container trains with two different loading forms, and speed limits of the freight trains were studied. The result indicates that under wind environment: 1) As for vehicles without and with cross-loaded structure, aero-pressure on the former is bigger, but air velocity around the latter is larger; 2) When sideslip angle θ=0°, the airflow is symmetry about train vertical axis; when θ〉0°, the airflow is detached at the top of vehicles, and the air velocity increases above the separated line but decreases below it; 3) With θ increasing, the lateral force on the mid vehicle firstly increases but decreases as θ=75°; 4) When the 6-axis X2K fiat car loads empty boxes of a 40 ft and a 48 ft at 120 km/h, the overturning wind speed is 25.19 m/s, and the train should be stopped under the 12th grade wind speed.展开更多
基金supported by the National Natural Science Foundation of China(No.51475328)the National Science and Technology Major Project of China(No.2015ZX04001202)
文摘Power generators and chemical engineering compressors include heavy and large centrifugal impellers. To produce these impellers in high-speed machining, a 4?-axis milling machine(or a 4-axis machine plus an indexing table) is often used in the industry, which is more rigid than a5-axis milling machine. Since impeller blades are designed with complex B-spline surfaces and impeller channels spaces vary significantly, it is more efficient to use multiple cutters as large as possible to cut a channel in sections and a blade surface in patches, instead of only using a small cutter to machine a whole blade and a channel. Unfortunately, no approach has been established to automatically calculate the largest diameters of cutters and their paths, which include the indexing table angles. To address this problem, an automated and optimization approach is proposed. Based on the structure of a 4?-axis machine, a geometric model for a cutter gouging/interfering the impeller is formulated, and an optimization model of the cutter diameter in terms of the indexing table angle is established at a cutter contact(CC) point on a blade surface. Then, the diameters of the tools,their orientations, and the indexing table angles are optimized, and each tool's paths are generated for machining its corresponding impeller section. As a test, an impeller is efficiently machined with these tools section by section; thus, this approach is valid. It can be directly used in the industry to improve efficiency of machining centrifugal impellers.
基金Project supported by Scholarship Award for Excellent Doctoral Student granted by Ministry of Education,ChinaProject(2012QNZT029) supported by the Fundamental Research Funds for the Central Universities of China+1 种基金Project(CX2010B122) supported by Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(2010ybfz088) supported by the Foundation of Excellent Doctoral Dissertation of Central South University,China
文摘Based on 3D, steady N-S equations and k-e turbulence model, Fluent was employed to do numerical simulation for lateral aerodynamic performance of 6-axis X2K double-deck container trains with two different loading forms, and speed limits of the freight trains were studied. The result indicates that under wind environment: 1) As for vehicles without and with cross-loaded structure, aero-pressure on the former is bigger, but air velocity around the latter is larger; 2) When sideslip angle θ=0°, the airflow is symmetry about train vertical axis; when θ〉0°, the airflow is detached at the top of vehicles, and the air velocity increases above the separated line but decreases below it; 3) With θ increasing, the lateral force on the mid vehicle firstly increases but decreases as θ=75°; 4) When the 6-axis X2K fiat car loads empty boxes of a 40 ft and a 48 ft at 120 km/h, the overturning wind speed is 25.19 m/s, and the train should be stopped under the 12th grade wind speed.