This study used a Polyindole in combination with TiO2 nanocatalyst as an efficient heterogeneous catalyst to carry out a multi-component Hantzsch reaction involving different aromatic aldehydes with methyl acetoacetat...This study used a Polyindole in combination with TiO2 nanocatalyst as an efficient heterogeneous catalyst to carry out a multi-component Hantzsch reaction involving different aromatic aldehydes with methyl acetoacetate, and aqueous ammonium to create 1,4-dihydropyridine derivatives under solvent free condition at ambient temperature. A broad range of aldehydes and methyl acetoacetates, ranging from heteroaromatic to polyaromatic one, with high level of functional group tolerance can be used to provide the desired products possessing relevant medicinal moiety in high yields. This technology has prospective advantages over current protocols, including the utilization of a cheap, stable, recyclable, and safe catalyst, quicker reaction times with higher yields and simple product isolation.展开更多
AgCl/Ti_(3)C_(2)@TiO_(2)ternary composites were prepared to form a heterojunction structure between AgCl and TiO_(2)and introduce Ti3C2 as a cocatalyst.The as-prepared AgCl/Ti_(3)C_(2)@TiO_(2)composites showed higher ...AgCl/Ti_(3)C_(2)@TiO_(2)ternary composites were prepared to form a heterojunction structure between AgCl and TiO_(2)and introduce Ti3C2 as a cocatalyst.The as-prepared AgCl/Ti_(3)C_(2)@TiO_(2)composites showed higher photocatalytic activity than pure AgCl and Ti_(3)C_(2)@TiO_(2)for photooxidation of a 1,4-dihydropyridine derivative(1,4-DHP)and tetracycline hydrochloride(TCH)under visible light irradiation(λ>400 nm).The photocatalytic activity of AgCl/Ti_(3)C_(2)@TiO_(2)composites depended on Ti_(3)C_(2)@TiO_(2)content,and the catalytic activity of the optimized samples were 6.9 times higher than that of pure AgCl for 1,4-DHP photodehydrogenation and 7.3 times higher than that of Ti_(3)C_(2)@TiO_(2)for TCH photooxidation.The increased photocatalytic activity was due to the formation of a heterojunction structure between AgCl and TiO_(2)and the introduction of Ti3C2 as a cocatalyst,which lowered the internal resistance,sped up the charge transfer,and increased the separation efficiency of photogenerated carries.Photogenerated holes and superoxide radical anions were the major active species in the photocatalytic process.展开更多
文摘This study used a Polyindole in combination with TiO2 nanocatalyst as an efficient heterogeneous catalyst to carry out a multi-component Hantzsch reaction involving different aromatic aldehydes with methyl acetoacetate, and aqueous ammonium to create 1,4-dihydropyridine derivatives under solvent free condition at ambient temperature. A broad range of aldehydes and methyl acetoacetates, ranging from heteroaromatic to polyaromatic one, with high level of functional group tolerance can be used to provide the desired products possessing relevant medicinal moiety in high yields. This technology has prospective advantages over current protocols, including the utilization of a cheap, stable, recyclable, and safe catalyst, quicker reaction times with higher yields and simple product isolation.
基金This work was supported by the Opening Project of the Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education(LZJ2002)the Open Project of Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province(CSPC2016-3-2).
文摘AgCl/Ti_(3)C_(2)@TiO_(2)ternary composites were prepared to form a heterojunction structure between AgCl and TiO_(2)and introduce Ti3C2 as a cocatalyst.The as-prepared AgCl/Ti_(3)C_(2)@TiO_(2)composites showed higher photocatalytic activity than pure AgCl and Ti_(3)C_(2)@TiO_(2)for photooxidation of a 1,4-dihydropyridine derivative(1,4-DHP)and tetracycline hydrochloride(TCH)under visible light irradiation(λ>400 nm).The photocatalytic activity of AgCl/Ti_(3)C_(2)@TiO_(2)composites depended on Ti_(3)C_(2)@TiO_(2)content,and the catalytic activity of the optimized samples were 6.9 times higher than that of pure AgCl for 1,4-DHP photodehydrogenation and 7.3 times higher than that of Ti_(3)C_(2)@TiO_(2)for TCH photooxidation.The increased photocatalytic activity was due to the formation of a heterojunction structure between AgCl and TiO_(2)and the introduction of Ti3C2 as a cocatalyst,which lowered the internal resistance,sped up the charge transfer,and increased the separation efficiency of photogenerated carries.Photogenerated holes and superoxide radical anions were the major active species in the photocatalytic process.