This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional ...This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.展开更多
Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamic...Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamical characteristics of these solutions were displayed through graphical,particularly revealing fusion and ssion phenomena in the interaction of lump and the one-stripe soliton.展开更多
For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ...For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.展开更多
The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partialdifferential equation. Applying the Backlund transformation and introducing the arbitraryf...The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partialdifferential equation. Applying the Backlund transformation and introducing the arbitraryfunctions of the seed solutions, the abundance of the localized structures of this model are derived. Some special types ofsolutions solitoff, dromions, dromion lattice, breathers and instantons are discussed by selecting the arbitrary functionsappropriately. The breathers may breath in their amplititudes, shapes, distances among the peaks and even the numberof the peaks.展开更多
We study the localized coherent structures ofa generally nonintegrable (2+ 1 )-dimensional KdV equation via a variable separation approach. In a special integrable case, the entrance of some arbitrary functions leads ...We study the localized coherent structures ofa generally nonintegrable (2+ 1 )-dimensional KdV equation via a variable separation approach. In a special integrable case, the entrance of some arbitrary functions leads to abundant coherent structures. However, in the general nonintegrable case, an additional condition has to be introduced for these arbitrary functions. Although the additional condition has been introduced into the solutions of the nonintegrable KdV equation, there still exist many interesting solitary wave structures. Especially, the nonintegrable KdV equation possesses the breather-like localized excitations, and the similar static ring soliton solutions as in the integrable case. Furthermor,in the integrable case, the interaction between two travelling ring solitons is elastic, while in the nonintegrable case we cannot find even the single travelling ring soliton solution.展开更多
BACKGROUND: Portopulmonary hypertension (PPH) is difficult to recognize in the early and middle stages because it is frequently asymptomatic. As right ventricular function is impaired in patients with moderate and sev...BACKGROUND: Portopulmonary hypertension (PPH) is difficult to recognize in the early and middle stages because it is frequently asymptomatic. As right ventricular function is impaired in patients with moderate and severe PPH, any dramatic hemodynamic changes in liver transplantation or other procedures may result in death from pulmonary and cardiac events. In this study, we investigated the prevalence of PPH in patients with portal hypertension (PHT) mainly caused by hepatitis B virus, and evaluated the effect of 2-dimensional Doppler echocardiography (2D-ECHO) in screening for PPH. METHODS: One hundred and five PHT patients received transthoracic 2D-ECHO preoperatively, systolic pulmonary arterial pressure (SPAP, normal range <30 mmHg) and pulmonary acceleration time (PAT, normal range >= 120 msec) were measured to screen for PPH (positive result: SPAP >= 30 mmHg and/or PAT <100 msec). Subsequently, pulmonary hemodynamic parameters were measured by right heart catheterization (RHC) for definitive diagnosis of PPH. The results of the two methods were compared to assess the screening effect of 2D-ECHO. RESULTS: The prevalence of PPH in this study was 3.8% (4/105). About 90% (95/105) of patients had a detectable tricuspid regurgitation by 2D-ECHO and the mean SPAP was 27.7 +/- 5.9 mmHg. Twenty-two of these 95 patients had an SPAP >30 mmHg. The mean PAT of all patients was 140 23 msec and 5 were <100 msec. Twenty-two patients were screened out by 2D-ECHO and 4 were diagnosed by RHC. A positive significant correlation (r=0.55, P<0.01) was found between SPAP measured by 2D-ECHO and mean pulmonary artery pressure (MPAP) measured by RHC, and a weak but significant negative correlation (r=-0.27, P=0.005) existed between PAT and pulmonary vascular resistance (PVR). The sensitivity, specificity, agreement rate, positive predictive value and negative predictive value of the screening test were 100%, 82%, 83%, 18% and 100%, respectively. CONCLUSIONS: The prevalence of PPH in this study is lower than in Western countries. As a screening test, 2D-ECHO has very high sensitivity and negative predictive value. A negative test result can directly be used to exclude PPH, while a positive result should be confirmed by RHC.展开更多
Painleve property and infinite symmetries of the (2+1)-dimensional higher-order Broer-Kaup (HBK) system are studied in this paper. Using the modified direct method, we derive the theorem of general symmetry gro.u...Painleve property and infinite symmetries of the (2+1)-dimensional higher-order Broer-Kaup (HBK) system are studied in this paper. Using the modified direct method, we derive the theorem of general symmetry gro.ups to (2+1)-dimensional HBK system. Based on our theorem, some new forms of solutions are obtained. We also find infinite number of conservation laws of the (2+1)-dimensional HBK system.展开更多
In this paper, we present a new rational algebraic approach to uniformly construct a series of exact analytical solutions for nonlinear partial differential equations. Compared with most existing tanh methods and othe...In this paper, we present a new rational algebraic approach to uniformly construct a series of exact analytical solutions for nonlinear partial differential equations. Compared with most existing tanh methods and other sophisticated methods, the proposed method not only recovers some known solutions, but also finds some new and general solutions. The solutions obtained in this paper include rational form triangular periodic wave solutions, solitary wave solutions, and elliptic doubly periodic wave solutions. The efficiency of the method can be demonstrated on (2+1)-dimensional dispersive long-wave equation.展开更多
New exact solutions in terms of the Jacobi elliptic functions are obtained to the (2+1)-dimensional breakingsoliton equation by means of the modified mapping method. Limit cases are studied, and new solitary wave solu...New exact solutions in terms of the Jacobi elliptic functions are obtained to the (2+1)-dimensional breakingsoliton equation by means of the modified mapping method. Limit cases are studied, and new solitary wave solutionsand triangular periodic wave solutions are obtained.展开更多
A general mapping deformation method is presented and applied to a (2+1)-dimensional Boussinesq system. Many new types of explicit and exact travelling wave solutions, which contain solitary wave solutions, periodic w...A general mapping deformation method is presented and applied to a (2+1)-dimensional Boussinesq system. Many new types of explicit and exact travelling wave solutions, which contain solitary wave solutions, periodic wave solutions, Jacobian and Weierstrass doubly periodic wave solutions, and other exact excitations like polynomial solutions, exponential solutions, and rational solutions, etc., are obtained by a simple algebraic transformation relation between the (2+1)-dimensional Boussinesq equation and a generalized cubic nonlinear Klein-Gordon equation.展开更多
In this paper, we extend the multiple Riccati equations rational expansion method by introducing a new ansatz. Using this method, many complexiton solutions of the (2+ 1 )-dimensional Nizhnik-Novikov-Veselov equati...In this paper, we extend the multiple Riccati equations rational expansion method by introducing a new ansatz. Using this method, many complexiton solutions of the (2+ 1 )-dimensional Nizhnik-Novikov-Veselov equations are obtained which include various combination of hyperbolic and trigonometric periodic function solutions, various combination of hyperbolic and rational function solutions, various combination of trigonometric periodic and rational function solutions, etc. The method can be also used to solve other nonlinear partial differential equations.展开更多
Based on the travelling wave method, a(2 + 1)-dimensional AKNS equation is considered. Elliptic solution and soliton solution are presented and it is shown that the soliton solution can be reduced from the elliptic so...Based on the travelling wave method, a(2 + 1)-dimensional AKNS equation is considered. Elliptic solution and soliton solution are presented and it is shown that the soliton solution can be reduced from the elliptic solution. It also proves that the result is consistent with the soliton solution of simplify Hirota bilinear method by Wazwaz and illustrate the solution are right travelling wave solution.展开更多
Recently, a new (2+1)-dimensional shallow water wave system, the (2+1)-dlmenslonal displacement shallow water wave system (2DDSWWS), was constructed by applying the variational principle of the analytic mechan...Recently, a new (2+1)-dimensional shallow water wave system, the (2+1)-dlmenslonal displacement shallow water wave system (2DDSWWS), was constructed by applying the variational principle of the analytic mechanics in the Lagrange coordinates. The disadvantage is that fluid viscidity is not considered in the 2DDSWWS, which is the same as the famous Kadomtsev-Petviashvili equation and Korteweg-de Vries equation. Applying dimensional analysis, we modify the 2DDSWWS and add the term related to the fluid viscidity to the 2DDSWWS. The approximate similarity solutions of the modified 2DDSWWS (M2DDSWWS) is studied and four similarity solutions are obtained. For the perfect fluids, the coefficient of kinematic viscosity is zero, then the M2DDSWWS will degenerate to the 2DDSWWS.展开更多
In this paper, the (2+ 1)-dimensional soliton equation is mainly being discussed. Based on the Hirota direct method, Wronskian technique and the Pfattlan properties, the N-soliton solution, Wronskian and Grammian s...In this paper, the (2+ 1)-dimensional soliton equation is mainly being discussed. Based on the Hirota direct method, Wronskian technique and the Pfattlan properties, the N-soliton solution, Wronskian and Grammian solutions have been generated.展开更多
Starting from the extended tanh-function method (ETM) based on the mapping method, the variable separation solutions of the (2+1)-dimensional asymmetric Nizhnik Novikov Veselov (ANNV) system are derived. By fur...Starting from the extended tanh-function method (ETM) based on the mapping method, the variable separation solutions of the (2+1)-dimensional asymmetric Nizhnik Novikov Veselov (ANNV) system are derived. By further study, we find that these variable separation solutions are seemingly independent of but actually dependent on each other. Based on the variable separation solution and by choosing appropriate functions, some novel and interesting interactions between special solitons, such as bell-like compacton, peakon-like compacton and compacton-like semifoldon, are investigated.展开更多
In this paper,with the aid of symbolic computation,we present a uniform method for constructing soliton solutions and periodic solutions to (2+1)-dimensional Toda lattice equation.
In this paper, we make use of the auxiliary equation and the expanded mapping methods to find the new exact periodic solutions for (2+1)-dimensional dispersive long wave equations in mathematical physics, which are...In this paper, we make use of the auxiliary equation and the expanded mapping methods to find the new exact periodic solutions for (2+1)-dimensional dispersive long wave equations in mathematical physics, which are expressed by Jacobi elliptic functions, and obtain some new solitary wave solutions (m → 1). This method can also be used to explore new periodic wave solutions for other nonlinear evolution equations.展开更多
Using extended homogeneous balance method and variable separation hypothesis, we found new variable separation solutions with three arbitrary functions of the (2+1)-dimensional dispersive long-wave equations, Based...Using extended homogeneous balance method and variable separation hypothesis, we found new variable separation solutions with three arbitrary functions of the (2+1)-dimensional dispersive long-wave equations, Based on derived solutions, we revealed abundant oscillating solitons such as dromion, multi-dromion, solitoff, solitary waves, and so on, by selecting appropriate functions.展开更多
Based on the B/icklund method and the multilinear variable separation approach (MLVSA), this paper finds a general solution including two arbitrary functions for the (2+1)-dimensional Burgers equations. Then a cl...Based on the B/icklund method and the multilinear variable separation approach (MLVSA), this paper finds a general solution including two arbitrary functions for the (2+1)-dimensional Burgers equations. Then a class of new doubly periodic wave solutions for (2+l)-dimensional Burgers equations is obtained by introducing appropriate Jacobi elliptic functions, Weierstrass elliptic functions and their combination in the general solutions (which contains two arbitrary functions). Two types of limit cases are considered. Firstly, taking one of the moduli to be unity and the other zero, it obtains particular wave (called semi-localized) patterns, which is periodic in one direction, but localized in the other direction. Secondly, if both moduli are tending to 1 as a limit, it derives some novel localized excitations (two-dromion solution).展开更多
The singular manifold method is used to obtain two general solutions to a (2+1)-dimensional breaking soliton equation, each of which contains two arbitrary functions. Then the new periodic wave solutions in terms of t...The singular manifold method is used to obtain two general solutions to a (2+1)-dimensional breaking soliton equation, each of which contains two arbitrary functions. Then the new periodic wave solutions in terms of the Jacobi elliptic functions are generated from the general solutions. The long wave limit yields the new types of dromion and solitary structures.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12275172 and 11905124)。
文摘This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.
基金Supported by the National Natural Science Foundation of China(12275172)。
文摘Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamical characteristics of these solutions were displayed through graphical,particularly revealing fusion and ssion phenomena in the interaction of lump and the one-stripe soliton.
文摘For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.
基金The project supported by National Natural Science Foundation of China
文摘The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partialdifferential equation. Applying the Backlund transformation and introducing the arbitraryfunctions of the seed solutions, the abundance of the localized structures of this model are derived. Some special types ofsolutions solitoff, dromions, dromion lattice, breathers and instantons are discussed by selecting the arbitrary functionsappropriately. The breathers may breath in their amplititudes, shapes, distances among the peaks and even the numberof the peaks.
文摘We study the localized coherent structures ofa generally nonintegrable (2+ 1 )-dimensional KdV equation via a variable separation approach. In a special integrable case, the entrance of some arbitrary functions leads to abundant coherent structures. However, in the general nonintegrable case, an additional condition has to be introduced for these arbitrary functions. Although the additional condition has been introduced into the solutions of the nonintegrable KdV equation, there still exist many interesting solitary wave structures. Especially, the nonintegrable KdV equation possesses the breather-like localized excitations, and the similar static ring soliton solutions as in the integrable case. Furthermor,in the integrable case, the interaction between two travelling ring solitons is elastic, while in the nonintegrable case we cannot find even the single travelling ring soliton solution.
基金supported by a grant from the Shanghai Municipal Health Bureau(No.054041)
文摘BACKGROUND: Portopulmonary hypertension (PPH) is difficult to recognize in the early and middle stages because it is frequently asymptomatic. As right ventricular function is impaired in patients with moderate and severe PPH, any dramatic hemodynamic changes in liver transplantation or other procedures may result in death from pulmonary and cardiac events. In this study, we investigated the prevalence of PPH in patients with portal hypertension (PHT) mainly caused by hepatitis B virus, and evaluated the effect of 2-dimensional Doppler echocardiography (2D-ECHO) in screening for PPH. METHODS: One hundred and five PHT patients received transthoracic 2D-ECHO preoperatively, systolic pulmonary arterial pressure (SPAP, normal range <30 mmHg) and pulmonary acceleration time (PAT, normal range >= 120 msec) were measured to screen for PPH (positive result: SPAP >= 30 mmHg and/or PAT <100 msec). Subsequently, pulmonary hemodynamic parameters were measured by right heart catheterization (RHC) for definitive diagnosis of PPH. The results of the two methods were compared to assess the screening effect of 2D-ECHO. RESULTS: The prevalence of PPH in this study was 3.8% (4/105). About 90% (95/105) of patients had a detectable tricuspid regurgitation by 2D-ECHO and the mean SPAP was 27.7 +/- 5.9 mmHg. Twenty-two of these 95 patients had an SPAP >30 mmHg. The mean PAT of all patients was 140 23 msec and 5 were <100 msec. Twenty-two patients were screened out by 2D-ECHO and 4 were diagnosed by RHC. A positive significant correlation (r=0.55, P<0.01) was found between SPAP measured by 2D-ECHO and mean pulmonary artery pressure (MPAP) measured by RHC, and a weak but significant negative correlation (r=-0.27, P=0.005) existed between PAT and pulmonary vascular resistance (PVR). The sensitivity, specificity, agreement rate, positive predictive value and negative predictive value of the screening test were 100%, 82%, 83%, 18% and 100%, respectively. CONCLUSIONS: The prevalence of PPH in this study is lower than in Western countries. As a screening test, 2D-ECHO has very high sensitivity and negative predictive value. A negative test result can directly be used to exclude PPH, while a positive result should be confirmed by RHC.
基金The project supported by the Natural Science Foundation of Shandong Province of China under Grant No. 2004 zx 16
文摘Painleve property and infinite symmetries of the (2+1)-dimensional higher-order Broer-Kaup (HBK) system are studied in this paper. Using the modified direct method, we derive the theorem of general symmetry gro.ups to (2+1)-dimensional HBK system. Based on our theorem, some new forms of solutions are obtained. We also find infinite number of conservation laws of the (2+1)-dimensional HBK system.
基金The project supported by National Natural Science Foundation of China, the Natural Science Foundation of Shandong Province of China, and the Natural Science Foundation of Liaocheng University .
文摘In this paper, we present a new rational algebraic approach to uniformly construct a series of exact analytical solutions for nonlinear partial differential equations. Compared with most existing tanh methods and other sophisticated methods, the proposed method not only recovers some known solutions, but also finds some new and general solutions. The solutions obtained in this paper include rational form triangular periodic wave solutions, solitary wave solutions, and elliptic doubly periodic wave solutions. The efficiency of the method can be demonstrated on (2+1)-dimensional dispersive long-wave equation.
文摘New exact solutions in terms of the Jacobi elliptic functions are obtained to the (2+1)-dimensional breakingsoliton equation by means of the modified mapping method. Limit cases are studied, and new solitary wave solutionsand triangular periodic wave solutions are obtained.
文摘A general mapping deformation method is presented and applied to a (2+1)-dimensional Boussinesq system. Many new types of explicit and exact travelling wave solutions, which contain solitary wave solutions, periodic wave solutions, Jacobian and Weierstrass doubly periodic wave solutions, and other exact excitations like polynomial solutions, exponential solutions, and rational solutions, etc., are obtained by a simple algebraic transformation relation between the (2+1)-dimensional Boussinesq equation and a generalized cubic nonlinear Klein-Gordon equation.
基金The project partially supported by the State Key Basic Research Program of China under Grant No. 2004CB318000 .
文摘In this paper, we extend the multiple Riccati equations rational expansion method by introducing a new ansatz. Using this method, many complexiton solutions of the (2+ 1 )-dimensional Nizhnik-Novikov-Veselov equations are obtained which include various combination of hyperbolic and trigonometric periodic function solutions, various combination of hyperbolic and rational function solutions, various combination of trigonometric periodic and rational function solutions, etc. The method can be also used to solve other nonlinear partial differential equations.
文摘Based on the travelling wave method, a(2 + 1)-dimensional AKNS equation is considered. Elliptic solution and soliton solution are presented and it is shown that the soliton solution can be reduced from the elliptic solution. It also proves that the result is consistent with the soliton solution of simplify Hirota bilinear method by Wazwaz and illustrate the solution are right travelling wave solution.
基金Project supported by the Natural Science Foundation of Guangdong Province of China (Grant No.10452840301004616)the National Natural Science Foundation of China (Grant No.61001018)the Scientific Research Foundation for the Doctors of University of Electronic Science and Technology of China Zhongshan Institute (Grant No.408YKQ09)
文摘Recently, a new (2+1)-dimensional shallow water wave system, the (2+1)-dlmenslonal displacement shallow water wave system (2DDSWWS), was constructed by applying the variational principle of the analytic mechanics in the Lagrange coordinates. The disadvantage is that fluid viscidity is not considered in the 2DDSWWS, which is the same as the famous Kadomtsev-Petviashvili equation and Korteweg-de Vries equation. Applying dimensional analysis, we modify the 2DDSWWS and add the term related to the fluid viscidity to the 2DDSWWS. The approximate similarity solutions of the modified 2DDSWWS (M2DDSWWS) is studied and four similarity solutions are obtained. For the perfect fluids, the coefficient of kinematic viscosity is zero, then the M2DDSWWS will degenerate to the 2DDSWWS.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10771196 and 10831003the Natural Science Foundation of Zhejiang Province under Grant Nos.Y7080198 and R6090109
文摘In this paper, the (2+ 1)-dimensional soliton equation is mainly being discussed. Based on the Hirota direct method, Wronskian technique and the Pfattlan properties, the N-soliton solution, Wronskian and Grammian solutions have been generated.
基金Project supported by the National Natural Science Foundation of China (Grant No 10672147) and Natural Science Foundation of Zhejiang Forestry University, China (Grant No 2006FR035). Acknowledgments The authors are indebted to Professor Zhang J F for his helpful suggestions and fruitful discussions, and also express their sincere thanks to the editors and the anonymous referees for their constructive suggestions and kind help.
文摘Starting from the extended tanh-function method (ETM) based on the mapping method, the variable separation solutions of the (2+1)-dimensional asymmetric Nizhnik Novikov Veselov (ANNV) system are derived. By further study, we find that these variable separation solutions are seemingly independent of but actually dependent on each other. Based on the variable separation solution and by choosing appropriate functions, some novel and interesting interactions between special solitons, such as bell-like compacton, peakon-like compacton and compacton-like semifoldon, are investigated.
基金supported by Natural Science Foundation of Zhejiang Province under Grant No.Y104420
文摘In this paper,with the aid of symbolic computation,we present a uniform method for constructing soliton solutions and periodic solutions to (2+1)-dimensional Toda lattice equation.
基金Project supported by the Anhui Key Laboratory of Information Materials and Devices (Anhui University),China
文摘In this paper, we make use of the auxiliary equation and the expanded mapping methods to find the new exact periodic solutions for (2+1)-dimensional dispersive long wave equations in mathematical physics, which are expressed by Jacobi elliptic functions, and obtain some new solitary wave solutions (m → 1). This method can also be used to explore new periodic wave solutions for other nonlinear evolution equations.
基金The project supported by the Natural Science Foundation of Inner Mongolia under Grant No. 200408020113 and National Natural Science Foundation of China under Grant No. 40564001
文摘Using extended homogeneous balance method and variable separation hypothesis, we found new variable separation solutions with three arbitrary functions of the (2+1)-dimensional dispersive long-wave equations, Based on derived solutions, we revealed abundant oscillating solitons such as dromion, multi-dromion, solitoff, solitary waves, and so on, by selecting appropriate functions.
基金Project supported by the National Natural Science Foundation of China (Grant No 10647112)the Foundation of Donghua University
文摘Based on the B/icklund method and the multilinear variable separation approach (MLVSA), this paper finds a general solution including two arbitrary functions for the (2+1)-dimensional Burgers equations. Then a class of new doubly periodic wave solutions for (2+l)-dimensional Burgers equations is obtained by introducing appropriate Jacobi elliptic functions, Weierstrass elliptic functions and their combination in the general solutions (which contains two arbitrary functions). Two types of limit cases are considered. Firstly, taking one of the moduli to be unity and the other zero, it obtains particular wave (called semi-localized) patterns, which is periodic in one direction, but localized in the other direction. Secondly, if both moduli are tending to 1 as a limit, it derives some novel localized excitations (two-dromion solution).
文摘The singular manifold method is used to obtain two general solutions to a (2+1)-dimensional breaking soliton equation, each of which contains two arbitrary functions. Then the new periodic wave solutions in terms of the Jacobi elliptic functions are generated from the general solutions. The long wave limit yields the new types of dromion and solitary structures.