Chemical-looping oxidative dehydrogenation(CL-ODH)is a process designed for the conversion of alkanes into olefins through cyclic redox reactions,eliminating the need for gaseous O_(2).In this work,we investigated the...Chemical-looping oxidative dehydrogenation(CL-ODH)is a process designed for the conversion of alkanes into olefins through cyclic redox reactions,eliminating the need for gaseous O_(2).In this work,we investigated the use of Ca_(2)MnO_(4)-layered perovskites modified with NaNO_(3) dopants,serving as redox catalysts(also known as oxygen carriers),for the CL-ODH of ethane within a temperature range of 700-780℃.Our findings revealed that the incorporation of NaNO_(3) as a modifier significantly-nhanced the selectivity for-thylene generation from Ca_(2)MnO_(4).At 750℃and a gas hourly space velocity of 1300 h^(-1),we achieved an-thane conversion up to 68.17%,accompanied by a corresponding-thylene yield of 57.39%.X-ray photoelectron spectroscopy analysis unveiled that the doping NaNO_(3) onto Ca_(2)MnO_(4) not only played a role in reducing the oxidation state of Mn ions but also increased the lattice oxygen content of the redox catalyst.Furthermore,formation of NaNO_(3) shell on the surface of Ca_(2)MnO_(4) led to a reduction in the concentration of manganese sites and modulated the oxygen-releasing behavior in a step-wise manner.This modulation contributed significantly to the enhanced selectivity for ethylene of the NaNO_(3)-doped Ca_(2)MnO_(4) catalyst.These findings provide compelling evidence for the potential of Ca_(2)MnO_(4)-layered perovskites as promising redox catalysts in the context of CL-ODH reactions.展开更多
Dehydrogenation of ethane to ethylene in CO_2 was investigated overCeO_2/γ-Al_2O_3 catalysts at 700℃ in a conventional flow reactor operating at atmosphericpressure. XRD, BET and microcalori-metric adsorption techni...Dehydrogenation of ethane to ethylene in CO_2 was investigated overCeO_2/γ-Al_2O_3 catalysts at 700℃ in a conventional flow reactor operating at atmosphericpressure. XRD, BET and microcalori-metric adsorption techniques were used to characterize thestructure and surface acidity/basicity of the CeO_2/γ-Al_2O_3 catalysts. The results show that thesurface acidity decreased while the surface basicity increased after the addition of CeO_2 toγ-Al_2O_3. Accordingly, the activity of the hydrogenation reaction of CO_2 increased, which mightbe responsible for the enhanced conversion in the dehydrogenation of ethane to ethylene. The highestethane conversion obtained was about 15% for the 25%CeO_2/γ-Al_2O_3. The selectivity to ethylenewas high for all the CeO_2, γ-Al_2O_3 and CeO2/γ-Al_2O_3 catalysts.展开更多
Catalytic ethane dehydrogenation(EDH) to ethylene over Pt-based catalysts has received increasing interests in recent years as it is a potential alternative route to conventional steam cracking. However, the catalysts...Catalytic ethane dehydrogenation(EDH) to ethylene over Pt-based catalysts has received increasing interests in recent years as it is a potential alternative route to conventional steam cracking. However, the catalysts used in this reaction often suffer from rapid deactivation due to serious coke deposition and metal sintering. Herein, we reported the effects of Zn modification on the stability of Pt/Al2 O3 for EDH.The Zn-modified sample(PtZn2/Al2 O3) exhibits stable ethane conversion(20%) with over 95% ethylene selectivity. More importantly, it exhibits a significantly low deactivation rate of only 0.003 h-1 at 600 °C for70 h, which surpasses most of previously reported catalysts. Detailed characterizations including in situ FT-IR, ethylene adsorption microcalorimetry, and HAADF-STEM etc. reveal that Zn modifier reduces the number of Lewis acid sites on the catalyst surface. Moreover, it could modify Pt sites and preferentially cover the step sites, which decrease surface energy and retard the sintering of Pt particle, then prohibiting the further dehydrogenation of ethylene to ethylidyne. Consequently, the good stability is realized due to anti-sintering and the decrease of coke formation on the Pt Zn2/Al2 O3 catalyst.展开更多
This paper reports on a new microporous composite silica membrane prepared via acid-catalyzed polymeric route of sol-gel method with tetraethylorthosilicate(TEOS)and a bridged silsesquioxane[1,2-bis(triethoxysilyl)eth...This paper reports on a new microporous composite silica membrane prepared via acid-catalyzed polymeric route of sol-gel method with tetraethylorthosilicate(TEOS)and a bridged silsesquioxane[1,2-bis(triethoxysilyl)ethane, BTESE]as precursors.A stable nano-sized composite silica sol with a mean volume size of^5 nm was synthesized. A 150 nm-thick defect-free composite silica membrane was deposited on disk support consisting of macroporous α-Al2O3 and mesoporousγ-Al2O3 intermediate layer by using dip-coating approach,followed by calcination under pure nitrogen atmosphere.The composite silica membranes exhibit molecular sieve properties for small gases like H2,CO2,O2,N2,CH4 and SF6 with hydrogen permeances in the range of(1-4)×10 -7mol·m -2·s -1·Pa -1(measured at 200°C,3.0×105 Pa).With respect to the membrane calcined at 500°C,it is found that the permselectivities of H 2 (0.289 nm)with respect to N2(0.365 nm),CH4(0.384 nm)and SF6(0.55 nm)are 22.9,42 and>1000,respectively, which are all much higher than the corresponding Knudsen values(H2/N2=3.7,H2/CH4=2.8,and H2/SF6=8.5).展开更多
A Ni-La/SiO2 catalyst was prepared through the incipient wetness impregnation method and tested in the oxidative dehydrogenation of ethane (ODHE) with CO2. The fresh and used catalysts were characterized by XRD and ...A Ni-La/SiO2 catalyst was prepared through the incipient wetness impregnation method and tested in the oxidative dehydrogenation of ethane (ODHE) with CO2. The fresh and used catalysts were characterized by XRD and SEM techniques. The Ni-La/SiO2 catalyst exhibited catalytic activity for the oxidative dehydrogenation of ethane, but with low ethylene selectivity in the absence of methane. The selectivity to ethylene increased with increasing molar ratio of methane in the feed. The carbon deposited on the catalyst surface in the sole ODHE with CO2 was mainly inert carbon, while much more filamentous carbon was formed in the presence of methane. The filamentous carbon was easy to be removed by CO2, which might play a role in improving the conversion of ethane to ethylene. The introduction of methane might affect the equilibrium of the CO2 reforming of ethane and the ODHE with CO2. As a consequence, the synthesis gas produced from CO2 reforming of methane partly inhibited the reaction of ethane and promoted the ODHE with CO2, thus increasing the selectivity of ethylene.展开更多
A series of Cr-containing MCM-41 molecular sieves crystallized at room temperature with a hexagonal and well-ordered structure were synthesized. XRD, FT-IR and DRS UV-Vis techniques were used to characterize the sampl...A series of Cr-containing MCM-41 molecular sieves crystallized at room temperature with a hexagonal and well-ordered structure were synthesized. XRD, FT-IR and DRS UV-Vis techniques were used to characterize the samples. The results indicate incorporation of Cr into the MCM-41 framework, and dispersion of some CrsO3 on the surface or/and in the bulk of the MCM-41. Test of catalytic properties of the series of samples for the topic reaction was carried out using a continuous-flow fixed-bed quartz reactor. Factors influencing the catalytic performance for this title reaction, such as Cr/Si ratio in MCM- 41 and reaction temperature were investigated. The experimental results indicate that over the 5%CrMCM-41 a 43.27% conversion of ethane and a 86.70% selectivity for ethylene were achieved in the ethane dehydrogenation with COs to ethylene at 973 K. It is suggested that both Cr^6+ and Cr^3+ are the catalytic activity center.展开更多
The reactions of Co(C1O4)2·6H2O and Co(NO3)2.6H2O with the di-Schiff base ligand N,N'-bis-(1-benzimidazo-2-yl-ethylidene)-ethane-1,2-diamine (LA) in ethanol have been investigated. The reactions of LA wi...The reactions of Co(C1O4)2·6H2O and Co(NO3)2.6H2O with the di-Schiff base ligand N,N'-bis-(1-benzimidazo-2-yl-ethylidene)-ethane-1,2-diamine (LA) in ethanol have been investigated. The reactions of LA with excess amount of cobalt salts yield the six-coordinate complexes [CoL2](ClO4)E·H2O 1 and [CoL2](NO3)E·H2O 2 as isolatable products (L= N-(1- benzimidazo-2-yl-ethylidene)-ethane-1,2-diamine), where L is a tri-dentate mono-Schiff base ligand, resulting from the hydrolysis of the precursor di-Schiff base LA. Both complexes were characterized by X-ray crystallography. Crystal data for complex 1: monoclinic, space group P21/c, a = 11.9214(10), b = 23.5828(17), c = 14.0387(12)A, β = 135.219(4)°, C22H30Cl2CoN8O9, Mr = 680.37, V = 2780.1(4) A^3 ,Z = 4, Dc = 1.625 g/cm^3,μ(MoKa) = 0.876 mm^-1, F(000) = 1404, the final R = 0.0725 and wR = 0.1530 for 5726 observed reflections (I 〉 2σ(I)). Crystal data for complex 2: monoclinic, space group P21/c, a = 18.2162(16), b = 10.0610(6), c = 18.593(2)A, β = 130.099(3)°, C22H30CoN10O7, Mr = 605.49, V = 2606.5(4) A3 Z = 4, Dc = 1.543 g/cm^3,μ(MoKa) = 0.722 mm^-1, F(000) = 1260, the final R = 0.0619 and wR = 0.1429 for 5194 observed reflections (I 〉 2σ(I)). X-ray diffraction analysis reveals that each cobalt atom in the two complexes is chelated by six nitrogen atoms from two tridentate iigands L, exhibiting a slightly distorted octahedral coordination sphere. In both complexes, the strong hydrogen-bonding interactions between the lattice waters and N-H groups of the ligands result in 1D chains which are further connected by ClO4^- (or NO3^-) groups to form a 3D framework. In complex 2, the strong π-π interactions increase the stability of the structure.展开更多
The shale gas revolution and the carbon-neutrality goal are motivating the landscape toward the synthesis of value-added chemicals or fuels from underutilized ethane with the assistance of greenhouse gas CO_(2).Combin...The shale gas revolution and the carbon-neutrality goal are motivating the landscape toward the synthesis of value-added chemicals or fuels from underutilized ethane with the assistance of greenhouse gas CO_(2).Combining ethane aromatization with CO_(2)reduction offers an opportunity to directly produce liquid products for facile separation,storage,and transportation.In the present work,Fe/ZSM-5 catalysts showed promise in the simultaneous CO_(2)reduction and ethane aromatization at atmospheric pressure and 873 K.The catalysts were further investigated using X-ray diffraction(XRD)and X-ray absorption fine structure(XAFS)measurements under in-situ conditions,indicating that most of Fe species existed in the form of Fe oxides and a portion of Fe was incorporated into the ZSM-5 framework generating Lewis acid sites.Both types of Fe species remained almost unchanged under reaction conditions,contributing to an enhanced aromatization activity of Fe/ZSM-5.The effects of CO_(2)and steam on the acid sites and in turn aromatization activity were also investigated by transient studies,which exhibited a reversible modification behavior.Moreover,CO_(2)was identified to be critical to enhance coke resistance and in turn catalyst stability.This work highlights the feasibility of using CO_(2)to assist the upgrading of abundant ethane from shale gas to aromatics over non-precious Fe-based zeolite catalysts.展开更多
Partial oxidation of methane and ethane to syngas over a LiLaNIO/γ-Al_2O_3 catalyst was investigated with a flow-reactor, XPS and XRD. Excellent reaction performance for CH_4-C_2H_6-O_2 to syngas over the LiLaNiO/γ-...Partial oxidation of methane and ethane to syngas over a LiLaNIO/γ-Al_2O_3 catalyst was investigated with a flow-reactor, XPS and XRD. Excellent reaction performance for CH_4-C_2H_6-O_2 to syngas over the LiLaNiO/γ-Al_2O_3 catalyst was achieved at 1073K, obtaining CO selectivity of 90%-95% and CH_4 conversion of ~ 97%, with a wide range of C_2H_6 content in the feed and of space velocity.展开更多
A comparative thermal decomposition kinetic investigation on Fe(III) complexes of a antipyrine Schiff base ligand, 1,2-Bis(imino-4’-antipyrinyl)ethane (GA)), with varying counter anions viz. CIO4-, NO3-, SCN-, Cl-, a...A comparative thermal decomposition kinetic investigation on Fe(III) complexes of a antipyrine Schiff base ligand, 1,2-Bis(imino-4’-antipyrinyl)ethane (GA)), with varying counter anions viz. CIO4-, NO3-, SCN-, Cl-, and Br-, has been done by thermogravimetric analysis by using Coats-Redfern equation. The kinetic parameters like activation energy (E), pre-exponential factor (A) and entropy of activation (ΔS) were quantified. On comparing the various kinetic parameters, lower activation energy was observed in second stage as compared to first thermal decomposition stage. The same trend has been observed for pre-exponential factor (A) and entropy of activation (ΔS). The present results show that the starting materials having higher activation energy (E), are more stable than the intermediate products, however;the intermediate products possess well-ordered chemical structure due to their highly negative entropy of activation (ΔS) values. The present investigation proves that the counter anions play an important role on the thermal decomposition kinetics of the complexes.展开更多
In this paper, instead of with the more expensive Fourier Transform Infrared Spectrometer(FTIR) a new technique of Temperature Programmed Transient Response(TP-TR) has been used with gas chromatography. Therefore, the...In this paper, instead of with the more expensive Fourier Transform Infrared Spectrometer(FTIR) a new technique of Temperature Programmed Transient Response(TP-TR) has been used with gas chromatography. Therefore, the TP-TR will be applied more widespreadly than ever before. With the technique of TP-TR and electric conductivity, the study is on the reaction mechanism and the adsorption behavior of the reactants and products to the present catalyst Mo-V-Nb/Al_2O_3 in the reaction from ethane through oxydehydrogenation to ethylene as the product. By Range-Kutta-Gill and Margarat methods, the kinetic parameters of the reaction elementary steps (i.e. rate constants, active energies and frequency factors) have been evaluated. The mathematical treatment coincides with the experimental results.展开更多
The novel brominated flame retardant,1,2-bis-(2,4,6-tribromophenoxy)ethane(BTBPE),is an emerging environ-mental pollutant with undetermined toxicity.We investigated how BTBPE causes thyroid endocrine disruption with i...The novel brominated flame retardant,1,2-bis-(2,4,6-tribromophenoxy)ethane(BTBPE),is an emerging environ-mental pollutant with undetermined toxicity.We investigated how BTBPE causes thyroid endocrine disruption with integrated in silico,in vitro,and in vivo assays.In yeast two-hybrid and T-Screen assays,BTBPE interacted with zebrafish thyroid hormone receptors with binding energies weaker than the TR agonist-3,3′,5-Triiodo-L-thyronine(T3),and disrupted thyroid function as a thyroid receptor(TR)agonist.We examined the bioconcentra-tion,developmental toxicity,and thyroid endocrine disruption in zebrafish after a 14-day exposure to BTBPE(1,3,10μg/L).Thyroxine(T4)was lower in BTBPE-treated larvae,whereas corticotropin-releasing hormone(CRH)and thyroid-stimulating hormone(TSH)were higher.The gene transcription alterations along the hypothalamic-pituitary-thyroid(HPT)axis were observed.Furthermore,reduced locomotion suggested that BTBPE imparts developmental neurotoxicity at zebrafish early developmental stage.Establishing that BTBPE has thyroid endocrine-disrupting effects is an important step for understanding and managing BTBPE toxicity.展开更多
Two new zinc(Ⅱ) compounds with dibenzoylmethane and N-donor ancillary ligands,[Zn(μ-pyz)(dbm)_2]_n(1) and [Zn(dbm)_2(μ-bpe)Zn(dbm)_2](2)(Hdbm = dibenzoylmethane,pyz = pyrazine and bpe = 1,2-bis(4-...Two new zinc(Ⅱ) compounds with dibenzoylmethane and N-donor ancillary ligands,[Zn(μ-pyz)(dbm)_2]_n(1) and [Zn(dbm)_2(μ-bpe)Zn(dbm)_2](2)(Hdbm = dibenzoylmethane,pyz = pyrazine and bpe = 1,2-bis(4-pyridyl)ethane),have been prepared and characterized using elemental analysis,IR,~1H NMR and 13 C NMR spectroscopy,and studied by thermal gravimetric analysis as well as single-crystal X-ray diffraction. The crystal and molecular structures of 1 and 2 have been solved by X-ray diffraction and they turned out to be a one-dimensional coordination polymer with linear dispositions of metal atoms and binuclear compound,respectively. These one-dimensional polymers are further connected to form a 3D supramolecular network by C–H···O(only in 2) and π-π interactions.展开更多
基金support of National Natural Science Foundation of China(22179027)gratefully acknowledged.This work was also supported by the Natural Science Foundation of Guangxi Province(2021GXNSFAA075063,2018GXNSFDA281005)+1 种基金the National Key Research and Development Program of China(2017YFE0105500)Science&Technology Research Project of Guangdong Province(2017A020216009).
文摘Chemical-looping oxidative dehydrogenation(CL-ODH)is a process designed for the conversion of alkanes into olefins through cyclic redox reactions,eliminating the need for gaseous O_(2).In this work,we investigated the use of Ca_(2)MnO_(4)-layered perovskites modified with NaNO_(3) dopants,serving as redox catalysts(also known as oxygen carriers),for the CL-ODH of ethane within a temperature range of 700-780℃.Our findings revealed that the incorporation of NaNO_(3) as a modifier significantly-nhanced the selectivity for-thylene generation from Ca_(2)MnO_(4).At 750℃and a gas hourly space velocity of 1300 h^(-1),we achieved an-thane conversion up to 68.17%,accompanied by a corresponding-thylene yield of 57.39%.X-ray photoelectron spectroscopy analysis unveiled that the doping NaNO_(3) onto Ca_(2)MnO_(4) not only played a role in reducing the oxidation state of Mn ions but also increased the lattice oxygen content of the redox catalyst.Furthermore,formation of NaNO_(3) shell on the surface of Ca_(2)MnO_(4) led to a reduction in the concentration of manganese sites and modulated the oxygen-releasing behavior in a step-wise manner.This modulation contributed significantly to the enhanced selectivity for ethylene of the NaNO_(3)-doped Ca_(2)MnO_(4) catalyst.These findings provide compelling evidence for the potential of Ca_(2)MnO_(4)-layered perovskites as promising redox catalysts in the context of CL-ODH reactions.
文摘Dehydrogenation of ethane to ethylene in CO_2 was investigated overCeO_2/γ-Al_2O_3 catalysts at 700℃ in a conventional flow reactor operating at atmosphericpressure. XRD, BET and microcalori-metric adsorption techniques were used to characterize thestructure and surface acidity/basicity of the CeO_2/γ-Al_2O_3 catalysts. The results show that thesurface acidity decreased while the surface basicity increased after the addition of CeO_2 toγ-Al_2O_3. Accordingly, the activity of the hydrogenation reaction of CO_2 increased, which mightbe responsible for the enhanced conversion in the dehydrogenation of ethane to ethylene. The highestethane conversion obtained was about 15% for the 25%CeO_2/γ-Al_2O_3. The selectivity to ethylenewas high for all the CeO_2, γ-Al_2O_3 and CeO2/γ-Al_2O_3 catalysts.
基金supported by the National Natural Science Foundation of China (NNSFC 21573232, 21576251, 21676269, 21878283)the Strategic Priority Research Program of Chinese Academy of Sciences Grant No. XDB17000000+2 种基金National Key Projects for Fundamental Research and Development of China (2016YFA0202801)The Youth Innovation Promotion Association CAS (2017223)Department of Science and Technology of Liaoning province under contract of 2015020086-101。
文摘Catalytic ethane dehydrogenation(EDH) to ethylene over Pt-based catalysts has received increasing interests in recent years as it is a potential alternative route to conventional steam cracking. However, the catalysts used in this reaction often suffer from rapid deactivation due to serious coke deposition and metal sintering. Herein, we reported the effects of Zn modification on the stability of Pt/Al2 O3 for EDH.The Zn-modified sample(PtZn2/Al2 O3) exhibits stable ethane conversion(20%) with over 95% ethylene selectivity. More importantly, it exhibits a significantly low deactivation rate of only 0.003 h-1 at 600 °C for70 h, which surpasses most of previously reported catalysts. Detailed characterizations including in situ FT-IR, ethylene adsorption microcalorimetry, and HAADF-STEM etc. reveal that Zn modifier reduces the number of Lewis acid sites on the catalyst surface. Moreover, it could modify Pt sites and preferentially cover the step sites, which decrease surface energy and retard the sintering of Pt particle, then prohibiting the further dehydrogenation of ethylene to ethylidyne. Consequently, the good stability is realized due to anti-sintering and the decrease of coke formation on the Pt Zn2/Al2 O3 catalyst.
基金Supported by the National Natural Science Foundation of China(20906047)the State Key Laboratory of Chemical Engineering(SKL-ChE-09A01)the State Key Laboratory of Materials-Oriented Chemical Engineering(ZK201002)
文摘This paper reports on a new microporous composite silica membrane prepared via acid-catalyzed polymeric route of sol-gel method with tetraethylorthosilicate(TEOS)and a bridged silsesquioxane[1,2-bis(triethoxysilyl)ethane, BTESE]as precursors.A stable nano-sized composite silica sol with a mean volume size of^5 nm was synthesized. A 150 nm-thick defect-free composite silica membrane was deposited on disk support consisting of macroporous α-Al2O3 and mesoporousγ-Al2O3 intermediate layer by using dip-coating approach,followed by calcination under pure nitrogen atmosphere.The composite silica membranes exhibit molecular sieve properties for small gases like H2,CO2,O2,N2,CH4 and SF6 with hydrogen permeances in the range of(1-4)×10 -7mol·m -2·s -1·Pa -1(measured at 200°C,3.0×105 Pa).With respect to the membrane calcined at 500°C,it is found that the permselectivities of H 2 (0.289 nm)with respect to N2(0.365 nm),CH4(0.384 nm)and SF6(0.55 nm)are 22.9,42 and>1000,respectively, which are all much higher than the corresponding Knudsen values(H2/N2=3.7,H2/CH4=2.8,and H2/SF6=8.5).
基金supported by the NNSFC (Nos. 20976109, 21021001)the Special Research Foundation of Doctoral Education of China (No.20090181110046)
文摘A Ni-La/SiO2 catalyst was prepared through the incipient wetness impregnation method and tested in the oxidative dehydrogenation of ethane (ODHE) with CO2. The fresh and used catalysts were characterized by XRD and SEM techniques. The Ni-La/SiO2 catalyst exhibited catalytic activity for the oxidative dehydrogenation of ethane, but with low ethylene selectivity in the absence of methane. The selectivity to ethylene increased with increasing molar ratio of methane in the feed. The carbon deposited on the catalyst surface in the sole ODHE with CO2 was mainly inert carbon, while much more filamentous carbon was formed in the presence of methane. The filamentous carbon was easy to be removed by CO2, which might play a role in improving the conversion of ethane to ethylene. The introduction of methane might affect the equilibrium of the CO2 reforming of ethane and the ODHE with CO2. As a consequence, the synthesis gas produced from CO2 reforming of methane partly inhibited the reaction of ethane and promoted the ODHE with CO2, thus increasing the selectivity of ethylene.
基金This work was financially supported by the Sci—ence and Technology Department of Jilin Province,China(20040703—2)and the sub·Program of the Sci—ence and Technology Cooperation Project between China and Spain.
文摘A series of Cr-containing MCM-41 molecular sieves crystallized at room temperature with a hexagonal and well-ordered structure were synthesized. XRD, FT-IR and DRS UV-Vis techniques were used to characterize the samples. The results indicate incorporation of Cr into the MCM-41 framework, and dispersion of some CrsO3 on the surface or/and in the bulk of the MCM-41. Test of catalytic properties of the series of samples for the topic reaction was carried out using a continuous-flow fixed-bed quartz reactor. Factors influencing the catalytic performance for this title reaction, such as Cr/Si ratio in MCM- 41 and reaction temperature were investigated. The experimental results indicate that over the 5%CrMCM-41 a 43.27% conversion of ethane and a 86.70% selectivity for ethylene were achieved in the ethane dehydrogenation with COs to ethylene at 973 K. It is suggested that both Cr^6+ and Cr^3+ are the catalytic activity center.
基金the National Natural Science Foundation of China (20425313)the Natural Science Foundation of Fujian Province (2005HZ01-1, 2006L2005, 2006F3135, 2006J0183)
文摘The reactions of Co(C1O4)2·6H2O and Co(NO3)2.6H2O with the di-Schiff base ligand N,N'-bis-(1-benzimidazo-2-yl-ethylidene)-ethane-1,2-diamine (LA) in ethanol have been investigated. The reactions of LA with excess amount of cobalt salts yield the six-coordinate complexes [CoL2](ClO4)E·H2O 1 and [CoL2](NO3)E·H2O 2 as isolatable products (L= N-(1- benzimidazo-2-yl-ethylidene)-ethane-1,2-diamine), where L is a tri-dentate mono-Schiff base ligand, resulting from the hydrolysis of the precursor di-Schiff base LA. Both complexes were characterized by X-ray crystallography. Crystal data for complex 1: monoclinic, space group P21/c, a = 11.9214(10), b = 23.5828(17), c = 14.0387(12)A, β = 135.219(4)°, C22H30Cl2CoN8O9, Mr = 680.37, V = 2780.1(4) A^3 ,Z = 4, Dc = 1.625 g/cm^3,μ(MoKa) = 0.876 mm^-1, F(000) = 1404, the final R = 0.0725 and wR = 0.1530 for 5726 observed reflections (I 〉 2σ(I)). Crystal data for complex 2: monoclinic, space group P21/c, a = 18.2162(16), b = 10.0610(6), c = 18.593(2)A, β = 130.099(3)°, C22H30CoN10O7, Mr = 605.49, V = 2606.5(4) A3 Z = 4, Dc = 1.543 g/cm^3,μ(MoKa) = 0.722 mm^-1, F(000) = 1260, the final R = 0.0619 and wR = 0.1429 for 5194 observed reflections (I 〉 2σ(I)). X-ray diffraction analysis reveals that each cobalt atom in the two complexes is chelated by six nitrogen atoms from two tridentate iigands L, exhibiting a slightly distorted octahedral coordination sphere. In both complexes, the strong hydrogen-bonding interactions between the lattice waters and N-H groups of the ligands result in 1D chains which are further connected by ClO4^- (or NO3^-) groups to form a 3D framework. In complex 2, the strong π-π interactions increase the stability of the structure.
基金financial support from the US Department of Energy,Basic Energy Sciences,Catalysis Science Program under contract number DE-SC0012704。
文摘The shale gas revolution and the carbon-neutrality goal are motivating the landscape toward the synthesis of value-added chemicals or fuels from underutilized ethane with the assistance of greenhouse gas CO_(2).Combining ethane aromatization with CO_(2)reduction offers an opportunity to directly produce liquid products for facile separation,storage,and transportation.In the present work,Fe/ZSM-5 catalysts showed promise in the simultaneous CO_(2)reduction and ethane aromatization at atmospheric pressure and 873 K.The catalysts were further investigated using X-ray diffraction(XRD)and X-ray absorption fine structure(XAFS)measurements under in-situ conditions,indicating that most of Fe species existed in the form of Fe oxides and a portion of Fe was incorporated into the ZSM-5 framework generating Lewis acid sites.Both types of Fe species remained almost unchanged under reaction conditions,contributing to an enhanced aromatization activity of Fe/ZSM-5.The effects of CO_(2)and steam on the acid sites and in turn aromatization activity were also investigated by transient studies,which exhibited a reversible modification behavior.Moreover,CO_(2)was identified to be critical to enhance coke resistance and in turn catalyst stability.This work highlights the feasibility of using CO_(2)to assist the upgrading of abundant ethane from shale gas to aromatics over non-precious Fe-based zeolite catalysts.
文摘Partial oxidation of methane and ethane to syngas over a LiLaNIO/γ-Al_2O_3 catalyst was investigated with a flow-reactor, XPS and XRD. Excellent reaction performance for CH_4-C_2H_6-O_2 to syngas over the LiLaNiO/γ-Al_2O_3 catalyst was achieved at 1073K, obtaining CO selectivity of 90%-95% and CH_4 conversion of ~ 97%, with a wide range of C_2H_6 content in the feed and of space velocity.
文摘A comparative thermal decomposition kinetic investigation on Fe(III) complexes of a antipyrine Schiff base ligand, 1,2-Bis(imino-4’-antipyrinyl)ethane (GA)), with varying counter anions viz. CIO4-, NO3-, SCN-, Cl-, and Br-, has been done by thermogravimetric analysis by using Coats-Redfern equation. The kinetic parameters like activation energy (E), pre-exponential factor (A) and entropy of activation (ΔS) were quantified. On comparing the various kinetic parameters, lower activation energy was observed in second stage as compared to first thermal decomposition stage. The same trend has been observed for pre-exponential factor (A) and entropy of activation (ΔS). The present results show that the starting materials having higher activation energy (E), are more stable than the intermediate products, however;the intermediate products possess well-ordered chemical structure due to their highly negative entropy of activation (ΔS) values. The present investigation proves that the counter anions play an important role on the thermal decomposition kinetics of the complexes.
文摘In this paper, instead of with the more expensive Fourier Transform Infrared Spectrometer(FTIR) a new technique of Temperature Programmed Transient Response(TP-TR) has been used with gas chromatography. Therefore, the TP-TR will be applied more widespreadly than ever before. With the technique of TP-TR and electric conductivity, the study is on the reaction mechanism and the adsorption behavior of the reactants and products to the present catalyst Mo-V-Nb/Al_2O_3 in the reaction from ethane through oxydehydrogenation to ethylene as the product. By Range-Kutta-Gill and Margarat methods, the kinetic parameters of the reaction elementary steps (i.e. rate constants, active energies and frequency factors) have been evaluated. The mathematical treatment coincides with the experimental results.
基金supported by the National Natural Science Foundation of China (Nos.42277278,22276213).
文摘The novel brominated flame retardant,1,2-bis-(2,4,6-tribromophenoxy)ethane(BTBPE),is an emerging environ-mental pollutant with undetermined toxicity.We investigated how BTBPE causes thyroid endocrine disruption with integrated in silico,in vitro,and in vivo assays.In yeast two-hybrid and T-Screen assays,BTBPE interacted with zebrafish thyroid hormone receptors with binding energies weaker than the TR agonist-3,3′,5-Triiodo-L-thyronine(T3),and disrupted thyroid function as a thyroid receptor(TR)agonist.We examined the bioconcentra-tion,developmental toxicity,and thyroid endocrine disruption in zebrafish after a 14-day exposure to BTBPE(1,3,10μg/L).Thyroxine(T4)was lower in BTBPE-treated larvae,whereas corticotropin-releasing hormone(CRH)and thyroid-stimulating hormone(TSH)were higher.The gene transcription alterations along the hypothalamic-pituitary-thyroid(HPT)axis were observed.Furthermore,reduced locomotion suggested that BTBPE imparts developmental neurotoxicity at zebrafish early developmental stage.Establishing that BTBPE has thyroid endocrine-disrupting effects is an important step for understanding and managing BTBPE toxicity.
文摘Two new zinc(Ⅱ) compounds with dibenzoylmethane and N-donor ancillary ligands,[Zn(μ-pyz)(dbm)_2]_n(1) and [Zn(dbm)_2(μ-bpe)Zn(dbm)_2](2)(Hdbm = dibenzoylmethane,pyz = pyrazine and bpe = 1,2-bis(4-pyridyl)ethane),have been prepared and characterized using elemental analysis,IR,~1H NMR and 13 C NMR spectroscopy,and studied by thermal gravimetric analysis as well as single-crystal X-ray diffraction. The crystal and molecular structures of 1 and 2 have been solved by X-ray diffraction and they turned out to be a one-dimensional coordination polymer with linear dispositions of metal atoms and binuclear compound,respectively. These one-dimensional polymers are further connected to form a 3D supramolecular network by C–H···O(only in 2) and π-π interactions.