2-ethylhexyl hydrogen-2-ethylhexylphosphonate (EHEP) is commonly used as a metal extractant because it has a particular affinity for rare-earth metals like Scandium (Sc). To develop a highly-selective adsorbent of Sc(...2-ethylhexyl hydrogen-2-ethylhexylphosphonate (EHEP) is commonly used as a metal extractant because it has a particular affinity for rare-earth metals like Scandium (Sc). To develop a highly-selective adsorbent of Sc(III), EHEP was introduced as a functional group onto a polyethylene fabric with radiation-induced graft polymerization(RIGP). The adsorption performances for Sc(III) were evaluated with aqueous solutions containing Sc(III) and Fe(III) in bath and column tests. As a result of column test, the adsorption capacities of Sc(III) and Fe(III) until the bed volume reached 5000 were 5.22 and 0.12 mg/g, respectively. It means that the amount of collected Sc(III) by the EHEP adsorbent was approximately 44 times higher than that of Fe(III). These results indicate that the grafted adsorbent containing EHEP has an extremely high selectivity for Sc(III) adsorption.展开更多
In view of the importance of solvent extraction of rare earth metals with the acidic organophosphorous reagent,the development of a chemically based model applicable to high concentration is desired.In the present stu...In view of the importance of solvent extraction of rare earth metals with the acidic organophosphorous reagent,the development of a chemically based model applicable to high concentration is desired.In the present study,the equilibrium distribution of dysprosium(Ⅲ)between an aqueous nitric acid solution and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (PC88A)was measured in the range of an initial aqueous dysprosium(Ⅲ)concentration from 1.0×10-3to 1.0×10-1kmol/m 3and PC88A concentration from 0.16 to 0.65 kmol/m3in Shellsol D70 as the diluent.The obtained data were analyzed using the chemically based model in order to correlate the equilibrium distribution ratios.In this model,dysprosium(Ⅲ)was assumed to be extracted with the PC88A dimer as a 1:3 complex,the activities were considered for the aqueous species,and the effective concentration of the PC88A dimer was calculated using Alstad's empirical equation.As a result,the apparent extraction equilibrium constant was determined to be 253(kmol·m- 3)-2with an excellent correlation between the experiment and calculation results in the wide range of the logarithm of the distribution ratio from-2 to 3.5.In conclusion,the methodology in this model would be effective for quantitative description of solvent extraction behavior of general rare earth elements as well as dysprosium.展开更多
Numerous studies have evaluated the toxicity and endocrine disrupting properties of organic UV filters for aquatic organisms,but little is known about their biodegradation in river sediments and their impact on microo...Numerous studies have evaluated the toxicity and endocrine disrupting properties of organic UV filters for aquatic organisms,but little is known about their biodegradation in river sediments and their impact on microorganisms.We have set up the sterile and microbiological systems in the laboratory,adding 2-ethylhexyl-4-methoxycinnamate(EHMC),one of organic UV filters included in the list of high yield chemicals,at concentrations of 2,20 and 200μg/L,and characterized the microbial community composition and diversity in sediments.Monitoring of EHMC degradation within 30 days revealed that the half-life in the microbial system(3.49 days)was much shorter than that in the sterile system(7.55 days).Two potential degradation products,4-mercaptobenzoic acid and 3-methoxyphenol were identified in the microbial system.Furthermore,high-throughput 16s and 18s rRNA gene sequencing showed that Proteobacteria dominated the sediment bacterial assemblages followed by Chloroflexi,Acidobacteria,Bacteroidetes and Nitrospirae;Eukaryota_uncultured fungus dominated the sediment fungal assemblages.Correlation analysis demonstrated that two bacterium genera(Anaerolineaceae_uncultured and Burkholderiaceae_uncultured)were significantly correlated with the biodegradation of EHMC.These results illustrate the biodegradability of EHMC in river sediments and its potential impact on microbial communities,which can provide useful information for eliminating the pollution of organic UV filters in natural river systems and assessing their potential ecological risks.展开更多
The chemistry of extraction of lanthanide and yttrium by 2-ethylhexylphosphonic acidmono-2-ethylhexyl ester in n-dodecane from nitric acid is described. By M W determination, NMR and the slope method, the extraction r...The chemistry of extraction of lanthanide and yttrium by 2-ethylhexylphosphonic acidmono-2-ethylhexyl ester in n-dodecane from nitric acid is described. By M W determination, NMR and the slope method, the extraction reaction is studied.Based upon elementery analyses, IR, NMR as well as MW determination, the compositions ofthe complexes formed with La(NO3)3 and Nd(NO3)3 are studied. Both the standard enthalprchanges(-△H°) and the relative free energy and entropy changes (-△Zr°)(△SPr°)of the ex-.traction reaction are also estimated. The regularity of the variations of Kea(concentrationequilibrium constant), -△AZr° and △Sr°reveals the tetrad effect. The average separationfactor of the adjacent lanthanides is calculated to be as high as 3.04.展开更多
The optimum conditions for the extraction-chromatography by using 2-ethylhexyl-2-ethylhexyl- phosphonate resin to separate scandium(Ⅲ)from large amounts of other metal ions were reported.A me- thod for the separation...The optimum conditions for the extraction-chromatography by using 2-ethylhexyl-2-ethylhexyl- phosphonate resin to separate scandium(Ⅲ)from large amounts of other metal ions were reported.A me- thod for the separation and determination of microamount of scandium has been developed.This method gives higher accuracy and reproducibility than solvent extraction with PMBP,especially,for the samples containing high content of titanium.Many shortcomings of other methods ever reported can be overcome by the present method.展开更多
A new method for the determination of trace non-rare earth elements (NREEs) impurities in high-purity lanthanum oxide by HPLC combined with ICP-AES is proposed. The chromatographic retention behaviors of matrix (La) a...A new method for the determination of trace non-rare earth elements (NREEs) impurities in high-purity lanthanum oxide by HPLC combined with ICP-AES is proposed. The chromatographic retention behaviors of matrix (La) and NREEs were studied using 2-ethylhexyl hydrogen 2-ethylhexyl phosphonate (P507) chelating resin as the stationary phase and dilute nitric acid as the mobile phase. It is found that the use of pH 1.7 nitric acid enables effective elution of NREEs from HPLC column, but the lanthanum remains on the column. The experimental results show that a favorable separation between matrix lanthanum and NREEs can be obtained within 15 min. The method proposed is applied to the determination of 8 NREEs impurities in high-purity La2O3. The recoveries of 8 NREEs are in the range of 90 % similar to 110 %.展开更多
文摘2-ethylhexyl hydrogen-2-ethylhexylphosphonate (EHEP) is commonly used as a metal extractant because it has a particular affinity for rare-earth metals like Scandium (Sc). To develop a highly-selective adsorbent of Sc(III), EHEP was introduced as a functional group onto a polyethylene fabric with radiation-induced graft polymerization(RIGP). The adsorption performances for Sc(III) were evaluated with aqueous solutions containing Sc(III) and Fe(III) in bath and column tests. As a result of column test, the adsorption capacities of Sc(III) and Fe(III) until the bed volume reached 5000 were 5.22 and 0.12 mg/g, respectively. It means that the amount of collected Sc(III) by the EHEP adsorbent was approximately 44 times higher than that of Fe(III). These results indicate that the grafted adsorbent containing EHEP has an extremely high selectivity for Sc(III) adsorption.
基金the Japan Society for the Promotion of Science for supporting this fellowship work(No.07616)
文摘In view of the importance of solvent extraction of rare earth metals with the acidic organophosphorous reagent,the development of a chemically based model applicable to high concentration is desired.In the present study,the equilibrium distribution of dysprosium(Ⅲ)between an aqueous nitric acid solution and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (PC88A)was measured in the range of an initial aqueous dysprosium(Ⅲ)concentration from 1.0×10-3to 1.0×10-1kmol/m 3and PC88A concentration from 0.16 to 0.65 kmol/m3in Shellsol D70 as the diluent.The obtained data were analyzed using the chemically based model in order to correlate the equilibrium distribution ratios.In this model,dysprosium(Ⅲ)was assumed to be extracted with the PC88A dimer as a 1:3 complex,the activities were considered for the aqueous species,and the effective concentration of the PC88A dimer was calculated using Alstad's empirical equation.As a result,the apparent extraction equilibrium constant was determined to be 253(kmol·m- 3)-2with an excellent correlation between the experiment and calculation results in the wide range of the logarithm of the distribution ratio from-2 to 3.5.In conclusion,the methodology in this model would be effective for quantitative description of solvent extraction behavior of general rare earth elements as well as dysprosium.
基金supported by the National Natural Science Foundation of China(Nos.51879228,51769034)the National Science Funds for Creative Research Groups of China(No.51421006)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Numerous studies have evaluated the toxicity and endocrine disrupting properties of organic UV filters for aquatic organisms,but little is known about their biodegradation in river sediments and their impact on microorganisms.We have set up the sterile and microbiological systems in the laboratory,adding 2-ethylhexyl-4-methoxycinnamate(EHMC),one of organic UV filters included in the list of high yield chemicals,at concentrations of 2,20 and 200μg/L,and characterized the microbial community composition and diversity in sediments.Monitoring of EHMC degradation within 30 days revealed that the half-life in the microbial system(3.49 days)was much shorter than that in the sterile system(7.55 days).Two potential degradation products,4-mercaptobenzoic acid and 3-methoxyphenol were identified in the microbial system.Furthermore,high-throughput 16s and 18s rRNA gene sequencing showed that Proteobacteria dominated the sediment bacterial assemblages followed by Chloroflexi,Acidobacteria,Bacteroidetes and Nitrospirae;Eukaryota_uncultured fungus dominated the sediment fungal assemblages.Correlation analysis demonstrated that two bacterium genera(Anaerolineaceae_uncultured and Burkholderiaceae_uncultured)were significantly correlated with the biodegradation of EHMC.These results illustrate the biodegradability of EHMC in river sediments and its potential impact on microbial communities,which can provide useful information for eliminating the pollution of organic UV filters in natural river systems and assessing their potential ecological risks.
文摘The chemistry of extraction of lanthanide and yttrium by 2-ethylhexylphosphonic acidmono-2-ethylhexyl ester in n-dodecane from nitric acid is described. By M W determination, NMR and the slope method, the extraction reaction is studied.Based upon elementery analyses, IR, NMR as well as MW determination, the compositions ofthe complexes formed with La(NO3)3 and Nd(NO3)3 are studied. Both the standard enthalprchanges(-△H°) and the relative free energy and entropy changes (-△Zr°)(△SPr°)of the ex-.traction reaction are also estimated. The regularity of the variations of Kea(concentrationequilibrium constant), -△AZr° and △Sr°reveals the tetrad effect. The average separationfactor of the adjacent lanthanides is calculated to be as high as 3.04.
文摘The optimum conditions for the extraction-chromatography by using 2-ethylhexyl-2-ethylhexyl- phosphonate resin to separate scandium(Ⅲ)from large amounts of other metal ions were reported.A me- thod for the separation and determination of microamount of scandium has been developed.This method gives higher accuracy and reproducibility than solvent extraction with PMBP,especially,for the samples containing high content of titanium.Many shortcomings of other methods ever reported can be overcome by the present method.
文摘A new method for the determination of trace non-rare earth elements (NREEs) impurities in high-purity lanthanum oxide by HPLC combined with ICP-AES is proposed. The chromatographic retention behaviors of matrix (La) and NREEs were studied using 2-ethylhexyl hydrogen 2-ethylhexyl phosphonate (P507) chelating resin as the stationary phase and dilute nitric acid as the mobile phase. It is found that the use of pH 1.7 nitric acid enables effective elution of NREEs from HPLC column, but the lanthanum remains on the column. The experimental results show that a favorable separation between matrix lanthanum and NREEs can be obtained within 15 min. The method proposed is applied to the determination of 8 NREEs impurities in high-purity La2O3. The recoveries of 8 NREEs are in the range of 90 % similar to 110 %.