The H2Ge=Ge:, as well as and its derivatives (X2Ge=Ge:, X=H, Me, F, C1, Br, Ph, At, ...) is a kind of new species. Its cycloaddition reactions is a new area for the study of germylene chemistry. The mechanism of t...The H2Ge=Ge:, as well as and its derivatives (X2Ge=Ge:, X=H, Me, F, C1, Br, Ph, At, ...) is a kind of new species. Its cycloaddition reactions is a new area for the study of germylene chemistry. The mechanism of the cycloaddition reaction between singlet Me2Ge=Ge: and acetaldehyde was investigated with the B3LYP/6-31G* method in this work. From the potential energy profile, it could be predicted that the reaction has one dominant reaction pathway. The reaction rule is that the two reactants firstly form a four-membered Ge-heterocyclic ring germylene through the [2+2] cycloaddition reaction. Because of the 4p unoccupied orbital of Ge: atom in the four-membered Ge-heterocyclic ring germylene and the ~ orbital of acetaldehyde forming a r^--~p donor-acceptor bond, the four-membered Ge-heterocyclic ring germylene further combines with acetaldehyde to form an intermedi- ate. Because the Ge atom in intermediate happens sp3 hybridization after transition state, then, intermediate isomerizes to a spiro-Ge-heterocyclic ring compound via a transition state. The research result indicates the laws of cycloaddition reaction between Me2Ge=Ge: and ac- etaldehyde, and lays the theory foundation of the cycloaddition reaction between H2Ge=Ge: and its derivatives (X2Ge=Ge:, X=H, Me, F, C1, Br, Ph, At, ...) and asymmetric ^-bonded compounds, which are significant for the synthesis of small-ring and spiro-Ge-heterocyclic ring compounds.展开更多
H2Ge=Si: and its derivatives (X2Ge=Si:, X=H, Me, F, C1, Br, Ph, Ar, ...) are new species. Its cycloaddition reactions are new area for the study of silylene chemistry. The cycloaddition reaction mechanism of singl...H2Ge=Si: and its derivatives (X2Ge=Si:, X=H, Me, F, C1, Br, Ph, Ar, ...) are new species. Its cycloaddition reactions are new area for the study of silylene chemistry. The cycloaddition reaction mechanism of singlet H2Ge=Si: and formaldehyde has been investigated with the MP2/aug-cc-pVDZ method. From the potential energy profile, it could be predicted that the reaction has one dominant reaction pathway. The reaction rule is that two reactants firstly form a four-membered Ge-heterocyclic ring silylene through the [2+2] cycloaddition reaction. Because of the 3p unoccupied orbital of Si: atom in the four-membered Ge-heterocyclic ring silylene and the π orbital of formaldehyde forming a π--p donor-acceptor bond, the four-membered Ge-heterocyclic ring silylene further combines with formaldehyde to form an intermediate. Because the Si: atom in the intermediate undergoes sp3 hybridization after transition state, then the intermediate isomerizes to a spiro-Si-heterocyclic ring compound involving Ge via a transition state. The result indicates the laws of cycloaddition reaction between H2Ge=Si: or its derivatives (X2Ge=Si:, X=H, Me, F, Cl, Br, Ph, Ar, ...) and asymmetric π-bonded compounds are significant for the synthesis of small-ring involving Si and Ge and spiro-Si-heterocyclic ring compounds involving Ge.展开更多
A presentation of hyperbolic unitary group is an important part in the unitary group. The group KG 2,n (R) plays an elementary role in presentation of unitary group. It is proved that KG 2,n(R)=1 for n≥2 over a...A presentation of hyperbolic unitary group is an important part in the unitary group. The group KG 2,n (R) plays an elementary role in presentation of unitary group. It is proved that KG 2,n(R)=1 for n≥2 over a ring R with division ring of quotients, using a new method, and a presentation of GE n(R) is given.展开更多
A presentation of hyperbolic unitary group is an important part in the unitary group. The group KG 2,n (R) plays an elementary role in presentation of unitary group. It is proved that KG 2,n(R)=1 for n≥2 over a...A presentation of hyperbolic unitary group is an important part in the unitary group. The group KG 2,n (R) plays an elementary role in presentation of unitary group. It is proved that KG 2,n(R)=1 for n≥2 over a ring R with division ring of quotients, using a new method, and a presentation of GE n(R) is given.展开更多
A weakly 2-primal ring is a common generalization of a semicommutative ring, a 2-primal ring and a locally 2-primal ring. In this paper, we investigate Ore extensions over weakly 2-primal rings. Let α be an endomorph...A weakly 2-primal ring is a common generalization of a semicommutative ring, a 2-primal ring and a locally 2-primal ring. In this paper, we investigate Ore extensions over weakly 2-primal rings. Let α be an endomorphism and δ an α- derivation of a ring R. We prove that (1) If R is an (α, δ)-compatible and weakly 2-primal ring, then R[x; α, δ] is weakly semicommutative; (2) If R is (α, δ)-compatible, then R is weakly 2-primal if and only if R[x; α, δ] is weakly 2-primal.展开更多
The annual series of δ13C were measured in tree rings of three Cryptomeria fortunei disks (OF-1, OF-2, and OF- 3) collected from West Tianmu Mountain, Zhejiang Province, China, according to cross-dating tree ring a...The annual series of δ13C were measured in tree rings of three Cryptomeria fortunei disks (OF-1, OF-2, and OF- 3) collected from West Tianmu Mountain, Zhejiang Province, China, according to cross-dating tree ring ages. There was no obvious decreasing trend of the δ13C annual time series of CF-2 before 1835. However, from 1835 to 1982 the three tree ring δ13C annual series exhibited similar decreasing trends that were significantly (P ≤ 0.001) correlated. The distribution characteristics of a scatter diagram between estimated δ13C series of CF-2 from modeling and the atmospheric CO2 concentration extracted from the Law Dome ice core from 1840 to 1978 were analyzed and a curvilinear regression equation for reconstructing atmospheric CO2 concentration was established with R2 = 0.98. Also, a test of independent samples indicated that between 1685 and 1839 the reconstructed atmospheric CO2 concentration .using the δ13C series of CF-2 had a close relationship with the Law Dome and Siple ice cores, with a standard deviation of 1.98. The general increasing trend of the reconstructed atmospheric CO2 concentration closely reflected the 10ng-term variation of atmospheric CO2 concentration recorded both before and after the Industrial Revolution. Between 1685 and 1840 the evaluated atmospheric CO2 concentration was stable, but after 1840 it exhibited a rapid increase. Given a longer δ13C annual time series of tree rings, it was feasible to rebuild a representative time series to describe the atmospheric CO2 concentration for an earlier period and for years that were not in the ice core record.展开更多
RING finger E3 ligases play an important role in regulating plant growth and development by mediating substrate degradation.In this study,we identified TaGW2L,encoding a Grain width and weight2(GW2)-like RING finger E...RING finger E3 ligases play an important role in regulating plant growth and development by mediating substrate degradation.In this study,we identified TaGW2L,encoding a Grain width and weight2(GW2)-like RING finger E3 ligase,as a novel positive regulator of heading date in wheat(Triticum aestivum L.).TaGW2L exhibited high amino acid sequence similarities with TaGW2 homoeologs,particularly in the conserved RING finger domain.Expression analysis indicated that TaGW2L was constitutively expressed in various wheat tissues.TaGW2L showed transactivation activity in yeast and could interact with the ubiquitin-conjugating enzymes E2_(s).An in vitro ubiquitination assay verified that TaGW2L possessed a similar E3 ligase activity to TaGW2.Overexpression of the TaGW2L-7A homoeolog in wheat led to a significantly earlier heading date under both natural conditions and long-day conditions.Transcriptome analysis revealed that multiple known genes positively regulating wheat heading were significantly upregulated in the TaGW2L-7A-overexpression plants compared with the wild-type control.Together,our findings shed light on the role of TaGW2L in wheat heading date and provide potential applications of TaGW2L for the adaptation improvement of crops.展开更多
AIM:To investigate M2 isoform of pyruvate kinase(PKM2) expression in gastric cancers and evaluate its potential as a prognostic biomarker and an anticancer target.METHODS:All tissue samples were derived from gastric c...AIM:To investigate M2 isoform of pyruvate kinase(PKM2) expression in gastric cancers and evaluate its potential as a prognostic biomarker and an anticancer target.METHODS:All tissue samples were derived from gastric cancer patients underwent curative gastrectomy as a primary treatment.Clinical and pathological information were obtained from the medical records.Gene expression microarray data from 60 cancer and 19 noncancer gastric tissues were analyzed to evaluate the expression level of PKM2 mRNA.Tissue microarrays were constructed from 368 gastric cancer patients.Immunohistochemistry was used to measure PKM2 expression and PKM2 positivity of cancer was determined by proportion of PKM2-positive tumor cells and staining intensity.Association between PKM2 expression and the clinicopathological factors was evaluated and the correlation between PKM2 and cancer prognosis was evaluated.RESULTS:PKM2 mRNA levels were increased more than 2-fold in primary gastric cancers compared to adjacent normal tissues from the same patients(log transformed expression level:7.6 ± 0.65 vs 6.3 ± 0.51,P < 0.001).Moreover,differentiated type cancers had significantly higher PKM2 mRNA compared to undifferentiated type cancers(log transformed expression level:7.8 ± 0.70 vs 6.7 ± 0.71,P < 0.001).PKM2 protein was mainly localized in the cytoplasm of primary cancer cells and detected in 144 of 368(39.1%) human gastric cancer cases.PKM2 expression was not related with stage(P = 0.811),but strongly correlated with gastric cancer differentiation(P < 0.001).Differentiated type cancers expressed more PKM2 protein than did the undifferentiated ones.Well differentiated adenocarcinoma showed 63.6% PKM2-positive cells;in contrast,signet-ring cell cancers showed only 17.7% PKM2-positive cells.Importantly,PKM2 expression was correlated with shorter overall survival(P < 0.05) independent of stage only in signet-ring cell cancers.CONCLUSION:PKM2 expression might be an adverse prognostic factor for signet-ring cell carcinomas.Its function and potential as a prognostic marker should be further verified in gastric cancer.展开更多
The X2Ge=Si: (X = H, Me, F, reaction is a new area for the study of silylene between singlet CI2Ge=Si: and formaldehyde CI, Br, Ph, At...) is a new species. Its cycloaddition chemistry. The mechanism of cycloaddit...The X2Ge=Si: (X = H, Me, F, reaction is a new area for the study of silylene between singlet CI2Ge=Si: and formaldehyde CI, Br, Ph, At...) is a new species. Its cycloaddition chemistry. The mechanism of cycloaddition reaction has been investigated with CCSD(T)//MP2/6-31G* method. From the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction pathways. The reaction rule presented is that the two reactants firstly form a four-membered Ge-heterocyclic ring silylene through the [2+2] cycloaddition reaction. Owing to the 3p unoccupied orbital of Si: atom in the four-membered Ge-heterocyclic ring silylene and the π orbital of formaldehyde forming a π-p donor-acceptor bond, the four-membered Ge-heterocyclic ring silylene further combines with formaldehyde to form an intermediate. Because the Si: atom in intermediate shows sp3 hybridization after transition state, the intermediate isomerizes to a spiro-Si-heterocyclic ring compound involving Ge via a transition state. Simultaneously, the ring strain of the four-membered Ge-heterocyclic ring silylene makes it isomerize to a twisted four-membered ring product. The research result indicates the laws of cycloaddition reaction between X2Ge=Si: (X = H, Me, F, C1, Br, Ph, Ar...) and the asymmetric g-bonded compounds, which are significant for the synthesis of small-ring and spiro-Si-heterocyclic ring compound involving Ge The study extends the research area and enriches the research content of silvlene chemistrv.展开更多
X2Si=Sn:(X = H, Me, F, Cl, Br, Ph, Ar…) are new species of chemistry. The cycloaddition reaction of X2Si=Sn: is a new study field of stannylene chemistry. To explore the rules of cycloaddition reaction between X2Si=S...X2Si=Sn:(X = H, Me, F, Cl, Br, Ph, Ar…) are new species of chemistry. The cycloaddition reaction of X2Si=Sn: is a new study field of stannylene chemistry. To explore the rules of cycloaddition reaction between X2Si=Sn: and the symmetric p-bonded compounds, the cycloaddition reactions of Cl2Si=Sn: and ethylene were selected as model reactions in this paper.The mechanism of cycloaddition reaction between singlet Cl2Si=Sn: and ethylene has been first investigated with the MP2/GENECP(C, H, Cl, Si in 6-311++G**;Sn in LanL2dz) method in this paper. From the potential energy profile, it could be predicted that the reaction has one dominant reaction channel. The reaction rule presented is that the 5p unoccupied orbital of Sn in Cl2Si=Sn: and the π orbital of ethylene forming a p→p donor-acceptor bond, resulting in the formation of an intermediate. Instability of the intermediate makes it isomerize to a four-membered Si-heterocyclic ring stannylene. Because the 5p unoccupied orbital of Sn atom in the four-membered Si-heterocyclic ring stannylene and the π orbital of ethylene form a p→p donor-acceptor bond, the four-membered Si-heterocyclic ring stannylene further combines with ethene to form another intermediate. Because the Sn atom in the intermediate shows sp3 hybridization after transition state, the intermediate isomerizes to a Si-heterocyclic spiro-Sn-heterocyclic ring compound. The research result indicates the laws of cycloaddition reaction between X2Si=Sn: and the symmetric π-bonded compounds. The study opens up a new research field for stannylene chemistry.展开更多
X2Si=Ge: (X = H, Me, F, CI, Br, Ph, Ar...) is a new species. Its cycloaddition reaction is a new area for the study of germylene chemistry. The mechanism of cycloaddition reaction between singlet state Me2Si=Ge: a...X2Si=Ge: (X = H, Me, F, CI, Br, Ph, Ar...) is a new species. Its cycloaddition reaction is a new area for the study of germylene chemistry. The mechanism of cycloaddition reaction between singlet state Me2Si=Ge: and formaldehyde has been investigated with the CCSD(T)//MP2/cc-pvtz method. From the potential energy profile, it could be predicted that the reaction has one dominant reaction pathway. The reaction rule presented is that the two reactants first form a four-membered Si-heterocyclic ring germylene through the [2+2] cycloaddition reaction. Because of the 4p unoccupied orbital of Ge: atom in the four-membered Si-heterocyclic ring germylene and the π orbital of formaldehyde form a π→p donor-acceptor bond, the four-membered Si-heterocyclic ring germylene further combines with formaldehyde to form an intermediate. Because the Ge atom in the intermediate undergoes sp^3 hybridization after transition state, then the intermediate isomerizes to a spiro-Ge-heterocyclic ring compound involving Si via a transition state. The research result indicates the laws of cycloaddition reaction between HzSi=Ge: and formaldehyde. It has important reference value for the cycloaddition reaction between X2Si=Ge: (X = H, Me, F, CI, Br, Ph, Ar…) and asymmetric to-bonded compounds, which is significant for the synthesis of small-ring and spiro-Ge-heterocyclic compounds involving Si. The study extends research area and enriches the research content of germylene chemistry.展开更多
The title compound, [Ni(tssb)(2,2-bipy)2].5(H2O) 1 (tssbH2 =2-[(E)-(2-oxido- phenyl)methyleneamino]ethanesulfonato, 2,2-bipy = 2,2'-bipyridinyl), belongs to orthorhombic, space group Pbcn with a = 20.3983...The title compound, [Ni(tssb)(2,2-bipy)2].5(H2O) 1 (tssbH2 =2-[(E)-(2-oxido- phenyl)methyleneamino]ethanesulfonato, 2,2-bipy = 2,2'-bipyridinyl), belongs to orthorhombic, space group Pbcn with a = 20.3983(18), b = 17.6929(15), c = 17.0897(15) nm, V= 6167.8(9) nm^3, Mr= 688.38, Z = 8, De = 1.481 g.cm^-3, F(000) = 2880,μ = 0.758 mm-1 and S =1.099. Each NiIr atom is six-coordinated by one N and one O atoms from one tssb^2- anion and four N atoms from two 2,2-bipy ligands to give a distorted octahedral geometry. Noticeably, there exists a rare octa-mem- bered water ring which presents a 1D chain by sulfonic group.展开更多
Photosynthesis in nature has been deemed as the most significant biochemical reaction,which maintains a relatively stable content of O_(2) and CO_(2) in the atmosphere.Herein,for a deeper comprehension of natural phot...Photosynthesis in nature has been deemed as the most significant biochemical reaction,which maintains a relatively stable content of O_(2) and CO_(2) in the atmosphere.Herein,for a deeper comprehension of natural photosynthesis,an artificial photosynthesis model reaction of photochemical CO_(2) to CO conversion(CO_(2)+2 H^(+)+2e^(-)→CO+H_(2)O)catalyzed by a homogeneous hexanuclear ring cobalt complex{K_(2)[CoO_(3)PCH_(2)N(CH_(2)CO_(2))_(2)]}_(6)(Co6 complex)is developed.Using the[Ru(bpy)_(3)]^(2+)as a photosensitizer and TEOA as a sacrificial electron donor,an optimal turnover frequency of 503.3 h^(‒1) and an apparent quantum efficiency of 0.81%are obtained.The good photocatalytic CO_(2) reduction performance is attributed to the efficient electron transfer between Co6 complex and[Ru(bpy)_(3)]^(2+),which boosts the photogenerated carriers separation of the photosensitizer.It is confirmed by the j‐V curves,light‐assisted UV‐vis curves,steady‐state photoluminescence spectra and real‐time laser flash photolysis experiments.In addition,the proposed catalytic mechanism for CO_(2) reduction reaction catalyzed by the Co6 complex is explored by the potassium thiocyanate poison experiment,Pourbaix diagram and density functional theory calculations.展开更多
Background: RING H2 finger E3 ligase (RH2FE3) genes encode cysteine rich proteins that mediate E3 ubiquitin ligase activity and degrade target substrates. The roles of these genes in plant responses to phytohormone...Background: RING H2 finger E3 ligase (RH2FE3) genes encode cysteine rich proteins that mediate E3 ubiquitin ligase activity and degrade target substrates. The roles of these genes in plant responses to phytohormones and abiotic stresses are well documented in various species, but their roles in cotton fiber development are poorly understood. To date, genome wide identification and expression analyses of Gossypium hirsutum RH2FE3 genes have not been reported. Methods: We performed computational identification, structural and phylogenetic analyses, chromosomal distribution analysis and estimated KJKs values of G hirsutum RH2FE3 genes. Orthologous and paralogous gene pairs were identified by all versus all BLASTP searches. We predicted cis regulatory elements and analyzed microarray data sets to generate heatmaps at different development stages. Tissue specific expression in cotton fiber, and hormonal and abiotic stress responses were determined by quantitative real time polymerase chain reaction (qRT PCR) analysis. Results: We investigated 140 G hirsutum, 80 G. orboreum, and evolutionary mechanisms and compared them with orthologs 89 G. roimondii putative RH2FB genes and their in Arobidopsis and rice. A domain based analysis of the G hirsutum RH2FE3 genes predicted conserved signature motifs and gene structures. Chromosomal localization showed the genes were distributed across all G hirsutum chromosomes, and 60 duplication events (4 tandem and 56 segmental duplications) and 98 orthologs were detected, cis elements were detected in the promoter regions of G hirsutum RH2FE3 genes. Microarray data and qRT PCR analyses showed that G hirsutum RH2FE3 genes were strongly correlated with cotton fiber development. Additionally, almost all the (brassinolide, gibberellic acid (GA), indole 3-acetic acid drought, and salt). dentified genes were up regulated in response to phytohormones (IAA), and salicylic acid (SA)) and abiotic stresses (cold, heat, Conclusions: The genome wide identification, comprehensive analysis, and characterization of conserved domains and gene structures, as well as phylogenetic analysis, cis element prediction, and expression profile analysis of G hirsutum RH2FE3 genes and their roles in cotton fiber development and responses to plant hormones and abiotic stresses are reported here for the first time. Our findings will contribute to the genome wide analysis of putative RH2FE3 genes in other species and lay a foundation for future physiological and functional research on G hirsutum RH2FE3 genes.展开更多
In order to prolong the service life of piston rings of heavy vehicle engine and decrease the friction and wear of piston rings and cylinder liner,CrMoN/MoS_2 multilayer films were deposited on the surface of rings by...In order to prolong the service life of piston rings of heavy vehicle engine and decrease the friction and wear of piston rings and cylinder liner,CrMoN/MoS_2 multilayer films were deposited on the surface of rings by magnetron sputtering and low temperature ion sulfuration.FESEM equipped with EDX was adopted to analyze the compositions and morphologies of surface,cross-section,and wear scars of the multilayer films.The nano-hardness and Young's modulus of the films were measured by a nano tester.Tribologicalproperties of the films were tested by an SRV~174;4 wear tester.The experimentalresults indicate that the structures of the multilayer films are dense and compact.The films possess nano hardness value of approximately 26.7 GPa and superior ability of plastic deformation resistance.The multilayer films can activate solid lubricating,and possess an excellent antifriction and wear resistance under the conditions of heavy load,high frequency,high temperature,and dynamic load.展开更多
A new complex, [Ni(L)2]·2(H2O) I (HL = 2-iminomethyl-6-methoxyphenol), has been synthesized and structurally determined. The crystal belongs to the trigonal system, space group R3- with a = 1.9341 (3), b ...A new complex, [Ni(L)2]·2(H2O) I (HL = 2-iminomethyl-6-methoxyphenol), has been synthesized and structurally determined. The crystal belongs to the trigonal system, space group R3- with a = 1.9341 (3), b = 1.9341 (3), C = 1.2048(2) nm, V = 3.9029(11) nm^3, Mr = 395.05, Z = 9, Dc = 1.513 g·cm^-3, F(000) = 1854,μ= 1.153 mm^-1 and S = 1.014. Each Ni^Ⅱ atom is four-coordinated by two N and two O atoms from two different L anions to give a slightly distorted square-plane geometry. The complex forms a 3-D network structure through N-H...O and O-H...O hydrogen bonds containing an interesting six-membered water ring.展开更多
文摘The H2Ge=Ge:, as well as and its derivatives (X2Ge=Ge:, X=H, Me, F, C1, Br, Ph, At, ...) is a kind of new species. Its cycloaddition reactions is a new area for the study of germylene chemistry. The mechanism of the cycloaddition reaction between singlet Me2Ge=Ge: and acetaldehyde was investigated with the B3LYP/6-31G* method in this work. From the potential energy profile, it could be predicted that the reaction has one dominant reaction pathway. The reaction rule is that the two reactants firstly form a four-membered Ge-heterocyclic ring germylene through the [2+2] cycloaddition reaction. Because of the 4p unoccupied orbital of Ge: atom in the four-membered Ge-heterocyclic ring germylene and the ~ orbital of acetaldehyde forming a r^--~p donor-acceptor bond, the four-membered Ge-heterocyclic ring germylene further combines with acetaldehyde to form an intermedi- ate. Because the Ge atom in intermediate happens sp3 hybridization after transition state, then, intermediate isomerizes to a spiro-Ge-heterocyclic ring compound via a transition state. The research result indicates the laws of cycloaddition reaction between Me2Ge=Ge: and ac- etaldehyde, and lays the theory foundation of the cycloaddition reaction between H2Ge=Ge: and its derivatives (X2Ge=Ge:, X=H, Me, F, C1, Br, Ph, At, ...) and asymmetric ^-bonded compounds, which are significant for the synthesis of small-ring and spiro-Ge-heterocyclic ring compounds.
文摘H2Ge=Si: and its derivatives (X2Ge=Si:, X=H, Me, F, C1, Br, Ph, Ar, ...) are new species. Its cycloaddition reactions are new area for the study of silylene chemistry. The cycloaddition reaction mechanism of singlet H2Ge=Si: and formaldehyde has been investigated with the MP2/aug-cc-pVDZ method. From the potential energy profile, it could be predicted that the reaction has one dominant reaction pathway. The reaction rule is that two reactants firstly form a four-membered Ge-heterocyclic ring silylene through the [2+2] cycloaddition reaction. Because of the 3p unoccupied orbital of Si: atom in the four-membered Ge-heterocyclic ring silylene and the π orbital of formaldehyde forming a π--p donor-acceptor bond, the four-membered Ge-heterocyclic ring silylene further combines with formaldehyde to form an intermediate. Because the Si: atom in the intermediate undergoes sp3 hybridization after transition state, then the intermediate isomerizes to a spiro-Si-heterocyclic ring compound involving Ge via a transition state. The result indicates the laws of cycloaddition reaction between H2Ge=Si: or its derivatives (X2Ge=Si:, X=H, Me, F, Cl, Br, Ph, Ar, ...) and asymmetric π-bonded compounds are significant for the synthesis of small-ring involving Si and Ge and spiro-Si-heterocyclic ring compounds involving Ge.
文摘A presentation of hyperbolic unitary group is an important part in the unitary group. The group KG 2,n (R) plays an elementary role in presentation of unitary group. It is proved that KG 2,n(R)=1 for n≥2 over a ring R with division ring of quotients, using a new method, and a presentation of GE n(R) is given.
文摘A presentation of hyperbolic unitary group is an important part in the unitary group. The group KG 2,n (R) plays an elementary role in presentation of unitary group. It is proved that KG 2,n(R)=1 for n≥2 over a ring R with division ring of quotients, using a new method, and a presentation of GE n(R) is given.
基金The NSF(11071097,11101217)of Chinathe NSF(BK20141476)of Jiangsu Province
文摘A weakly 2-primal ring is a common generalization of a semicommutative ring, a 2-primal ring and a locally 2-primal ring. In this paper, we investigate Ore extensions over weakly 2-primal rings. Let α be an endomorphism and δ an α- derivation of a ring R. We prove that (1) If R is an (α, δ)-compatible and weakly 2-primal ring, then R[x; α, δ] is weakly semicommutative; (2) If R is (α, δ)-compatible, then R is weakly 2-primal if and only if R[x; α, δ] is weakly 2-primal.
基金Project supported by the National Natural Science Foundation of China (No. 49771001).
文摘The annual series of δ13C were measured in tree rings of three Cryptomeria fortunei disks (OF-1, OF-2, and OF- 3) collected from West Tianmu Mountain, Zhejiang Province, China, according to cross-dating tree ring ages. There was no obvious decreasing trend of the δ13C annual time series of CF-2 before 1835. However, from 1835 to 1982 the three tree ring δ13C annual series exhibited similar decreasing trends that were significantly (P ≤ 0.001) correlated. The distribution characteristics of a scatter diagram between estimated δ13C series of CF-2 from modeling and the atmospheric CO2 concentration extracted from the Law Dome ice core from 1840 to 1978 were analyzed and a curvilinear regression equation for reconstructing atmospheric CO2 concentration was established with R2 = 0.98. Also, a test of independent samples indicated that between 1685 and 1839 the reconstructed atmospheric CO2 concentration .using the δ13C series of CF-2 had a close relationship with the Law Dome and Siple ice cores, with a standard deviation of 1.98. The general increasing trend of the reconstructed atmospheric CO2 concentration closely reflected the 10ng-term variation of atmospheric CO2 concentration recorded both before and after the Industrial Revolution. Between 1685 and 1840 the evaluated atmospheric CO2 concentration was stable, but after 1840 it exhibited a rapid increase. Given a longer δ13C annual time series of tree rings, it was feasible to rebuild a representative time series to describe the atmospheric CO2 concentration for an earlier period and for years that were not in the ice core record.
基金supported by the National Natural Science Foundation of China (32172045, 31671687)the National Key Research and Development Program of China (2016YFD0100302)the Agricultural Science and Technology Innovation Program of the CAAS
文摘RING finger E3 ligases play an important role in regulating plant growth and development by mediating substrate degradation.In this study,we identified TaGW2L,encoding a Grain width and weight2(GW2)-like RING finger E3 ligase,as a novel positive regulator of heading date in wheat(Triticum aestivum L.).TaGW2L exhibited high amino acid sequence similarities with TaGW2 homoeologs,particularly in the conserved RING finger domain.Expression analysis indicated that TaGW2L was constitutively expressed in various wheat tissues.TaGW2L showed transactivation activity in yeast and could interact with the ubiquitin-conjugating enzymes E2_(s).An in vitro ubiquitination assay verified that TaGW2L possessed a similar E3 ligase activity to TaGW2.Overexpression of the TaGW2L-7A homoeolog in wheat led to a significantly earlier heading date under both natural conditions and long-day conditions.Transcriptome analysis revealed that multiple known genes positively regulating wheat heading were significantly upregulated in the TaGW2L-7A-overexpression plants compared with the wild-type control.Together,our findings shed light on the role of TaGW2L in wheat heading date and provide potential applications of TaGW2L for the adaptation improvement of crops.
基金Supported by Faculty Research Grant of Yonsei University College of Medicine for 2011,6-2011-0113,6-2011-0146A Faculty Research Grant of Department of Internal Medicine,Yonsei University College of Medicine for 2010Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education,Science and Technology,No. 2010-0024248
文摘AIM:To investigate M2 isoform of pyruvate kinase(PKM2) expression in gastric cancers and evaluate its potential as a prognostic biomarker and an anticancer target.METHODS:All tissue samples were derived from gastric cancer patients underwent curative gastrectomy as a primary treatment.Clinical and pathological information were obtained from the medical records.Gene expression microarray data from 60 cancer and 19 noncancer gastric tissues were analyzed to evaluate the expression level of PKM2 mRNA.Tissue microarrays were constructed from 368 gastric cancer patients.Immunohistochemistry was used to measure PKM2 expression and PKM2 positivity of cancer was determined by proportion of PKM2-positive tumor cells and staining intensity.Association between PKM2 expression and the clinicopathological factors was evaluated and the correlation between PKM2 and cancer prognosis was evaluated.RESULTS:PKM2 mRNA levels were increased more than 2-fold in primary gastric cancers compared to adjacent normal tissues from the same patients(log transformed expression level:7.6 ± 0.65 vs 6.3 ± 0.51,P < 0.001).Moreover,differentiated type cancers had significantly higher PKM2 mRNA compared to undifferentiated type cancers(log transformed expression level:7.8 ± 0.70 vs 6.7 ± 0.71,P < 0.001).PKM2 protein was mainly localized in the cytoplasm of primary cancer cells and detected in 144 of 368(39.1%) human gastric cancer cases.PKM2 expression was not related with stage(P = 0.811),but strongly correlated with gastric cancer differentiation(P < 0.001).Differentiated type cancers expressed more PKM2 protein than did the undifferentiated ones.Well differentiated adenocarcinoma showed 63.6% PKM2-positive cells;in contrast,signet-ring cell cancers showed only 17.7% PKM2-positive cells.Importantly,PKM2 expression was correlated with shorter overall survival(P < 0.05) independent of stage only in signet-ring cell cancers.CONCLUSION:PKM2 expression might be an adverse prognostic factor for signet-ring cell carcinomas.Its function and potential as a prognostic marker should be further verified in gastric cancer.
基金supported by the National Natural Science Foundation of China(No.51102114)
文摘The X2Ge=Si: (X = H, Me, F, reaction is a new area for the study of silylene between singlet CI2Ge=Si: and formaldehyde CI, Br, Ph, At...) is a new species. Its cycloaddition chemistry. The mechanism of cycloaddition reaction has been investigated with CCSD(T)//MP2/6-31G* method. From the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction pathways. The reaction rule presented is that the two reactants firstly form a four-membered Ge-heterocyclic ring silylene through the [2+2] cycloaddition reaction. Owing to the 3p unoccupied orbital of Si: atom in the four-membered Ge-heterocyclic ring silylene and the π orbital of formaldehyde forming a π-p donor-acceptor bond, the four-membered Ge-heterocyclic ring silylene further combines with formaldehyde to form an intermediate. Because the Si: atom in intermediate shows sp3 hybridization after transition state, the intermediate isomerizes to a spiro-Si-heterocyclic ring compound involving Ge via a transition state. Simultaneously, the ring strain of the four-membered Ge-heterocyclic ring silylene makes it isomerize to a twisted four-membered ring product. The research result indicates the laws of cycloaddition reaction between X2Ge=Si: (X = H, Me, F, C1, Br, Ph, Ar...) and the asymmetric g-bonded compounds, which are significant for the synthesis of small-ring and spiro-Si-heterocyclic ring compound involving Ge The study extends the research area and enriches the research content of silvlene chemistrv.
基金supported by the National Natural Science Foundation of China(No.51102114)
文摘X2Si=Sn:(X = H, Me, F, Cl, Br, Ph, Ar…) are new species of chemistry. The cycloaddition reaction of X2Si=Sn: is a new study field of stannylene chemistry. To explore the rules of cycloaddition reaction between X2Si=Sn: and the symmetric p-bonded compounds, the cycloaddition reactions of Cl2Si=Sn: and ethylene were selected as model reactions in this paper.The mechanism of cycloaddition reaction between singlet Cl2Si=Sn: and ethylene has been first investigated with the MP2/GENECP(C, H, Cl, Si in 6-311++G**;Sn in LanL2dz) method in this paper. From the potential energy profile, it could be predicted that the reaction has one dominant reaction channel. The reaction rule presented is that the 5p unoccupied orbital of Sn in Cl2Si=Sn: and the π orbital of ethylene forming a p→p donor-acceptor bond, resulting in the formation of an intermediate. Instability of the intermediate makes it isomerize to a four-membered Si-heterocyclic ring stannylene. Because the 5p unoccupied orbital of Sn atom in the four-membered Si-heterocyclic ring stannylene and the π orbital of ethylene form a p→p donor-acceptor bond, the four-membered Si-heterocyclic ring stannylene further combines with ethene to form another intermediate. Because the Sn atom in the intermediate shows sp3 hybridization after transition state, the intermediate isomerizes to a Si-heterocyclic spiro-Sn-heterocyclic ring compound. The research result indicates the laws of cycloaddition reaction between X2Si=Sn: and the symmetric π-bonded compounds. The study opens up a new research field for stannylene chemistry.
基金supported by the National Natural Science Foundation of China(No.51102114)
文摘X2Si=Ge: (X = H, Me, F, CI, Br, Ph, Ar...) is a new species. Its cycloaddition reaction is a new area for the study of germylene chemistry. The mechanism of cycloaddition reaction between singlet state Me2Si=Ge: and formaldehyde has been investigated with the CCSD(T)//MP2/cc-pvtz method. From the potential energy profile, it could be predicted that the reaction has one dominant reaction pathway. The reaction rule presented is that the two reactants first form a four-membered Si-heterocyclic ring germylene through the [2+2] cycloaddition reaction. Because of the 4p unoccupied orbital of Ge: atom in the four-membered Si-heterocyclic ring germylene and the π orbital of formaldehyde form a π→p donor-acceptor bond, the four-membered Si-heterocyclic ring germylene further combines with formaldehyde to form an intermediate. Because the Ge atom in the intermediate undergoes sp^3 hybridization after transition state, then the intermediate isomerizes to a spiro-Ge-heterocyclic ring compound involving Si via a transition state. The research result indicates the laws of cycloaddition reaction between HzSi=Ge: and formaldehyde. It has important reference value for the cycloaddition reaction between X2Si=Ge: (X = H, Me, F, CI, Br, Ph, Ar…) and asymmetric to-bonded compounds, which is significant for the synthesis of small-ring and spiro-Ge-heterocyclic compounds involving Si. The study extends research area and enriches the research content of germylene chemistry.
基金Supported by the Key Laboratory of Non-ferrous Metal Materials and New Processing TechnologyMinistry of Education and the State Key Laboratory of Coordination Chemistry
文摘The title compound, [Ni(tssb)(2,2-bipy)2].5(H2O) 1 (tssbH2 =2-[(E)-(2-oxido- phenyl)methyleneamino]ethanesulfonato, 2,2-bipy = 2,2'-bipyridinyl), belongs to orthorhombic, space group Pbcn with a = 20.3983(18), b = 17.6929(15), c = 17.0897(15) nm, V= 6167.8(9) nm^3, Mr= 688.38, Z = 8, De = 1.481 g.cm^-3, F(000) = 2880,μ = 0.758 mm-1 and S =1.099. Each NiIr atom is six-coordinated by one N and one O atoms from one tssb^2- anion and four N atoms from two 2,2-bipy ligands to give a distorted octahedral geometry. Noticeably, there exists a rare octa-mem- bered water ring which presents a 1D chain by sulfonic group.
文摘Photosynthesis in nature has been deemed as the most significant biochemical reaction,which maintains a relatively stable content of O_(2) and CO_(2) in the atmosphere.Herein,for a deeper comprehension of natural photosynthesis,an artificial photosynthesis model reaction of photochemical CO_(2) to CO conversion(CO_(2)+2 H^(+)+2e^(-)→CO+H_(2)O)catalyzed by a homogeneous hexanuclear ring cobalt complex{K_(2)[CoO_(3)PCH_(2)N(CH_(2)CO_(2))_(2)]}_(6)(Co6 complex)is developed.Using the[Ru(bpy)_(3)]^(2+)as a photosensitizer and TEOA as a sacrificial electron donor,an optimal turnover frequency of 503.3 h^(‒1) and an apparent quantum efficiency of 0.81%are obtained.The good photocatalytic CO_(2) reduction performance is attributed to the efficient electron transfer between Co6 complex and[Ru(bpy)_(3)]^(2+),which boosts the photogenerated carriers separation of the photosensitizer.It is confirmed by the j‐V curves,light‐assisted UV‐vis curves,steady‐state photoluminescence spectra and real‐time laser flash photolysis experiments.In addition,the proposed catalytic mechanism for CO_(2) reduction reaction catalyzed by the Co6 complex is explored by the potassium thiocyanate poison experiment,Pourbaix diagram and density functional theory calculations.
基金supported by the Major Research Plan of National Natural Science Foundation of China(NO.31690093)Young Elite Scientist Sponsorship Program by CAST(China Association for Science and Technology)
文摘Background: RING H2 finger E3 ligase (RH2FE3) genes encode cysteine rich proteins that mediate E3 ubiquitin ligase activity and degrade target substrates. The roles of these genes in plant responses to phytohormones and abiotic stresses are well documented in various species, but their roles in cotton fiber development are poorly understood. To date, genome wide identification and expression analyses of Gossypium hirsutum RH2FE3 genes have not been reported. Methods: We performed computational identification, structural and phylogenetic analyses, chromosomal distribution analysis and estimated KJKs values of G hirsutum RH2FE3 genes. Orthologous and paralogous gene pairs were identified by all versus all BLASTP searches. We predicted cis regulatory elements and analyzed microarray data sets to generate heatmaps at different development stages. Tissue specific expression in cotton fiber, and hormonal and abiotic stress responses were determined by quantitative real time polymerase chain reaction (qRT PCR) analysis. Results: We investigated 140 G hirsutum, 80 G. orboreum, and evolutionary mechanisms and compared them with orthologs 89 G. roimondii putative RH2FB genes and their in Arobidopsis and rice. A domain based analysis of the G hirsutum RH2FE3 genes predicted conserved signature motifs and gene structures. Chromosomal localization showed the genes were distributed across all G hirsutum chromosomes, and 60 duplication events (4 tandem and 56 segmental duplications) and 98 orthologs were detected, cis elements were detected in the promoter regions of G hirsutum RH2FE3 genes. Microarray data and qRT PCR analyses showed that G hirsutum RH2FE3 genes were strongly correlated with cotton fiber development. Additionally, almost all the (brassinolide, gibberellic acid (GA), indole 3-acetic acid drought, and salt). dentified genes were up regulated in response to phytohormones (IAA), and salicylic acid (SA)) and abiotic stresses (cold, heat, Conclusions: The genome wide identification, comprehensive analysis, and characterization of conserved domains and gene structures, as well as phylogenetic analysis, cis element prediction, and expression profile analysis of G hirsutum RH2FE3 genes and their roles in cotton fiber development and responses to plant hormones and abiotic stresses are reported here for the first time. Our findings will contribute to the genome wide analysis of putative RH2FE3 genes in other species and lay a foundation for future physiological and functional research on G hirsutum RH2FE3 genes.
基金Funded by the National Natural Science Foundation of China(No.50901089)the Project supported by Army Important Researches(No.2012ZB02)
文摘In order to prolong the service life of piston rings of heavy vehicle engine and decrease the friction and wear of piston rings and cylinder liner,CrMoN/MoS_2 multilayer films were deposited on the surface of rings by magnetron sputtering and low temperature ion sulfuration.FESEM equipped with EDX was adopted to analyze the compositions and morphologies of surface,cross-section,and wear scars of the multilayer films.The nano-hardness and Young's modulus of the films were measured by a nano tester.Tribologicalproperties of the films were tested by an SRV~174;4 wear tester.The experimentalresults indicate that the structures of the multilayer films are dense and compact.The films possess nano hardness value of approximately 26.7 GPa and superior ability of plastic deformation resistance.The multilayer films can activate solid lubricating,and possess an excellent antifriction and wear resistance under the conditions of heavy load,high frequency,high temperature,and dynamic load.
基金the Key Laboratory of Non-ferrous Metal Materials and New Processing Technology, Ministry of Education and the State Key Laboratory of Coordination Chemistry
文摘A new complex, [Ni(L)2]·2(H2O) I (HL = 2-iminomethyl-6-methoxyphenol), has been synthesized and structurally determined. The crystal belongs to the trigonal system, space group R3- with a = 1.9341 (3), b = 1.9341 (3), C = 1.2048(2) nm, V = 3.9029(11) nm^3, Mr = 395.05, Z = 9, Dc = 1.513 g·cm^-3, F(000) = 1854,μ= 1.153 mm^-1 and S = 1.014. Each Ni^Ⅱ atom is four-coordinated by two N and two O atoms from two different L anions to give a slightly distorted square-plane geometry. The complex forms a 3-D network structure through N-H...O and O-H...O hydrogen bonds containing an interesting six-membered water ring.