Field-free spin-orbit torque(SOT)switching of perpendicular magnetization is essential for future spintronic devices.This study demonstrates the field-free switching of perpendicular magnetization in an HfO_(2)/Pt/Co/...Field-free spin-orbit torque(SOT)switching of perpendicular magnetization is essential for future spintronic devices.This study demonstrates the field-free switching of perpendicular magnetization in an HfO_(2)/Pt/Co/TaO_(x) structure,which is facilitated by a wedge-shaped HfO_(2)buffer layer.The field-free switching ratio varies with HfO_(2)thickness,reaching optimal performance at 25 nm.This phenomenon is attributed to the lateral anisotropy gradient of the Co layer,which is induced by the wedge-shaped HfO_(2)buffer layer.The thickness gradient of HfO_(2)along the wedge creates a corresponding lateral anisotropy gradient in the Co layer,correlating with the switching ratio.These findings indicate that field-free SOT switching can be achieved through designing buffer layer,offering a novel approach to innovating spin-orbit device.展开更多
The polarization switching plays a crucial role in controlling the final products in the catalytic pro-cess.The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal a...The polarization switching plays a crucial role in controlling the final products in the catalytic pro-cess.The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal atoms to form active centers on ferroelectric material In_(2)Se_(3).During the polariza-tion switching process,the difference in surface electrostatic potential leads to a redistribution of electronic states.This affects the interaction strength between the adsorbed small molecules and the catalyst substrate,thereby altering the reaction barrier.In addition,the surface states must be considered to prevent the adsorption of other small molecules(such as *O,*OH,and *H).Further-more,the V@↓-In_(2)Se_(3) possesses excellent catalytic properties,high electrochemical and thermody-namic stability,which facilitates the catalytic process.Machine learning also helps us further ex-plore the underlying mechanisms.The systematic investigation provides novel insights into the design and application of two-dimensional switchable ferroelectric catalysts for various chemical processes.展开更多
Based on the nonlinear Mohr-Coulomb failure criterion and an associated flow rule,a kinematic admissible velocity field of failure mechanism of the 2-layer soil above a shallow horizontal strip anchor plate is constru...Based on the nonlinear Mohr-Coulomb failure criterion and an associated flow rule,a kinematic admissible velocity field of failure mechanism of the 2-layer soil above a shallow horizontal strip anchor plate is constructed.The ultimate pull-out force and its corresponding failure mechanism through the upper bound limit analysis according to a variation principle are deduced.When the 2-layer overlying soil is degraded into single-layer soil,the model of ultimate pullout force could also be degraded into the model of single-layer soil.And the comparison between results of single-layer soil variation method and those calculated by rigid limit analysis method proves the correctness of our method.Based on that,the influence of changes of geotechnical parameters on ultimate pullout forces and failure mechanism of a shallow horizontal strip anchor with the 2-layer soil above are analyzed.The results show that the ultimate pull-out force and failure mechanism of a shallow horizontal strip anchor with the 2-layer soil above are affected by the nonlinear geotechnical parameters greatly.Thus,it is very important to obtain the accurate geotechnical parameters of 2-layer soil for the evaluation of the ultimate pullout capacity of the anchor plate.展开更多
Long-term stability test of Mo/HZSM-5-N catalysts(HZSM-5-N stands for nano-sized HZSM-5) in methane dehydroaromatization(MDA)reaction has been performed with periodic CH4-H2 switch at 1033-1073 K for more than 100...Long-term stability test of Mo/HZSM-5-N catalysts(HZSM-5-N stands for nano-sized HZSM-5) in methane dehydroaromatization(MDA)reaction has been performed with periodic CH4-H2 switch at 1033-1073 K for more than 1000 h.During this test,methane conversion ranges from 13% to 16%,and mean yield to aromatics(i.e.benzene and naphthalene) exceeds 10%.N2-physisorption,XRD,NMR and TPO measurements were performed for the used Mo/HZSM-5 catalysts and coke deposition,and the results revealed that the periodic hydrogenation can effectively suppress coke deposition by removing the inert aromatic-type coke,thus ensuring Mo/HZSM-5 partly maintained its activity even in the presence of large amount of coke deposition.The effect of zeolite particle size on the catalytic activity was also explored,and the results showed that the nano-sized zeolite with low diffusion resistance performed better.It is recognized that the size effect was enhanced by reaction time,and it became more remarkable in a long-term MDA reaction even at a low space velocity.展开更多
The resistive switching characteristics of TiO_2 nanowire networks directly grown on Ti foil by a single-step hydrothermal technique are discussed in this paper. The Ti foil serves as the supply of Ti atoms for growth...The resistive switching characteristics of TiO_2 nanowire networks directly grown on Ti foil by a single-step hydrothermal technique are discussed in this paper. The Ti foil serves as the supply of Ti atoms for growth of the TiO_2 nanowires, making the preparation straightforward. It also acts as a bottom electrode for the device. A top Al electrode was fabricated by e-beam evaporation process. The Al/TiO_2 nanowire networks/Ti device fabricated in this way displayed a highly repeatable and electroforming-free bipolar resistive behavior with retention for more than 10~4 s and an OFF/ON ratio of approximately 70. The switching mechanism of this Al/TiO_2 nanowire networks/Ti device is suggested to arise from the migration of oxygen vacancies under applied electric field. This provides a facile way to obtain metal oxide nanowire-based Re RAM device in the future.展开更多
Agonist binding of A2A adenosine receptor (A2AAR) shows protective effects against inflammatory and immune. Efforts are exerted in understanding the general mechanism and developing A2AAR selectively binding agonist...Agonist binding of A2A adenosine receptor (A2AAR) shows protective effects against inflammatory and immune. Efforts are exerted in understanding the general mechanism and developing A2AAR selectively binding agonists. Using molecular dynamics (MD) simula- tions, we have studied the interactions between A2AAR and its agonist (adenosine), and analyzed the induced dynamic behaviors of the receptor. Key residues interacting with adenosine are identified: A63^2.61,I66^2.64,V84^3.32,L85^3.33,T88^3.36,F168^5.29,M177^5.38,L249^6.51,H250^6.52 and N253^6.55 interacting with adenosine with affinities larger than 0.5 kcal/mol. Moreover, no interaction between adenosine and L167^5.28 is observed, which supports our previous findings that L1675^5.28 is an antagonist specific binding reside. The dynamic be- haviors of agonist bound A2AAR are found to be different from apo-A2AAR in three typical functional switches: (i) tight "ionic lock" forms in adenosine-A2AAR, but it is in equilibrium between formation and breakage in apo-A2AAR; (ii) the "rotamer toggle switch", T88^3.36/F242^6.44/W246^6.48, adopted different rotameric conformations in adenosin-A2AAR and apo-A2AAR; (iii) adenosine-A2AAR has a flexible intracellular loop 2 (IC2) and s-helical IC3, while apo-A2AAR preferred s-helical IC2 and flexible IC3. Our results indicate that agonist binding induced different conformational rearrangements of these characteristic functional switches in adenosine-A2AAR and apo-A2AAR.展开更多
This paper addresses an infinite horizon distributed H2/H∞ filtering for discrete-time systems under conditions of bounded power and white stochastic signals. The filter algorithm is designed by computing a pair of g...This paper addresses an infinite horizon distributed H2/H∞ filtering for discrete-time systems under conditions of bounded power and white stochastic signals. The filter algorithm is designed by computing a pair of gains namely the estimator and the coupling. Herein, we implement a filter to estimate unknown parameters such that the closed-loop multi-sensor accomplishes the desired performances of the proposed H2 and H∞ schemes over a finite horizon. A switched strategy is implemented to switch between the states once the operation conditions have changed due to disturbances. It is shown that the stability of the overall filtering-error system with H2/H∞ performance can be established if a piecewise-quadratic Lyapunov function is properly constructed. A simulation example is given to show the effectiveness of the proposed approach.展开更多
This study deals with Peak of electron density in F2-layer sensibility scale during quiet time on solar minimum. Peaks of electron density in F2-layer (NmF2) values at the quietest days are compared to those carried o...This study deals with Peak of electron density in F2-layer sensibility scale during quiet time on solar minimum. Peaks of electron density in F2-layer (NmF2) values at the quietest days are compared to those carried out from the two nearest days (previous and following of quietest day). The study uses International Reference Ionosphere (IRI) for ionosphere modeling. The located station is Ouagadougou, in West Africa. Solar minimum of phase 22 is considered in this study. Using three core principles of ionosphere modeling under IRI running conditions, the study enables to carry out Peak of electron density in F2-layer values during the quietest days of the characteristic months for the four different seasons. These parameters are compared to those of the previous and the following of the quietest days (the day before and following each quietest selected day) at the same hour. The knowledge of NmF2 values at the quietest days and at the two nearest days enables to calculate the relative error that can be made on this parameter. This calculation highlights insignificant relative errors. This means that NmF2 values at the two nearest days of each quietest day on solar minimum can be used for simulating the quietest days’ behavior. NmF2 values obtained by running IRI model have good correlation with those carried out by Thermosphere-Ionosphere-Electrodynamics-General Circulation Model (TIEGCM).展开更多
In spite of the numerous advances in the development of H_(2)and O_(2)evolutions upon water splitting,the separation of H_(2)from O_(2)still remains a severe challenge.Herein,the novel dual-functional nanocatalysts Pd...In spite of the numerous advances in the development of H_(2)and O_(2)evolutions upon water splitting,the separation of H_(2)from O_(2)still remains a severe challenge.Herein,the novel dual-functional nanocatalysts Pd/carbon nanosphere(CNS),obtained via immobilization of ultrafine Pd nanoparticles onto CNS,are developed and employed for both selective H_(2)generation from HCOOH dehydrogenation and O_(2)evolution from H_(2)O_(2)decomposition.In these reactions,the highest activities for Pd/CNS-800(i.e.,calcinated at 800℃)are 2478 h−1 and 993 min^(−1)for H_(2)and O_(2)evolution,respectively.The highly efficient and selective“on-off”switch for selective H_(2)generation from HCOOH is successfully realized by pH adjustment.This novel and highly efficient nanocatalyst Pd/CNS-800 not only provides new approaches for the promising application of HCOOH and H_(2)O_(2)as economic and safe H_(2)and O_(2)carriers,respectively,for fuel cells,but also promotes the development of“on-off”switch for on-demand H_(2)evolution.展开更多
ZnMn_2O_4 films for resistance random access memory(RRAM) were fabricated with different device structures by magnetron sputtering. The effects of electrode on I-V characteristics, resistance switching behavior, end...ZnMn_2O_4 films for resistance random access memory(RRAM) were fabricated with different device structures by magnetron sputtering. The effects of electrode on I-V characteristics, resistance switching behavior, endurance and retention characteristics of ZnMn_2O_4 films were investigated. The ZnMn_2O_4 films, using p-Si and Pt as bottom electrode, exhibit bipolar resistive switching(BRS) behavior dominated by the space-charge-limited conduction(SCLC) mechanism in the high resistance state(HRS) and the filament conduction mechanism in the low resistance state(LRS), but the ZnMn_2O_4 films using n-Si as bottom electrodes exhibit both bipolar and unipolar resistive switching behaviors controlled by the Poole-Frenkel(P-F) conduction mechanism in both HRS and LRS. Ag/ZnMn_2O_4/p-Si device possesses the best endurance and retention characteristics, in which the number of stable repetition switching cycle is over 1000 and the retention time is longer than 106 seconds. However, the highest RHRS/R_(LRS) ratio of 104 and the lowest V_(ON) and V_(OFF) of 3.0 V have been observed in Ag/ZnMn_2O_4/Pt device. Though the Ag/ZnMn_2O_4/n-Si device also possesses the highest RHRS/R_(LRS) ratio of 104, but the highest values of V_(ON),V_(OFF), RHRS and R_(LRS), as well as the poor endurance and retention characteristics.展开更多
The Ag/Mg0.2Zn0.8O/ZnMn2O4/p^+-Si heterostructure devices were fabricated by sol-gel spin coating technique and the resistive switching behavior,conduction mechanism,endurance characteristic,and retention properties ...The Ag/Mg0.2Zn0.8O/ZnMn2O4/p^+-Si heterostructure devices were fabricated by sol-gel spin coating technique and the resistive switching behavior,conduction mechanism,endurance characteristic,and retention properties were investigated.A distinct bipolar resistive switching behavior of the devices was observed at room temperature.The resistance ratio R_(HRS)/RLRS of high resistance state and low resistance state is as large as four orders of magnitude with a readout voltage of 2.0 V.The dominant conduction mechanism of the device is trap-controlled space charge limited current(SCLC).The devices exhibit good durability under 1×10^3cycles and the degradation is invisible for more than 10^6 s.展开更多
A resistance random access memory(RRAM) with a structure of Ag/ZnMn2O4/p-Si was fabricated by magnetron sputtering method. Reliable and repeated switching of the resistance of ZnMn2O4 fi lms was obtained between two...A resistance random access memory(RRAM) with a structure of Ag/ZnMn2O4/p-Si was fabricated by magnetron sputtering method. Reliable and repeated switching of the resistance of ZnMn2O4 fi lms was obtained between two well-defi ned states of high and low resistance with a narrow dispersion and 3V switching voltages. Resistance ratio of the high resistance state and low resistance state was found in the range of around 10^3 orders of magnitude and up to about 10^3 test cycles. The retention time of Ag/ZnMn2O4/p-Si device is longer than 10^6 seconds and the resistance ratio between two states remains higher than 10^3 at room temperature, showing a remarkable reliability performance of the RRAM devices for nonvolatile memory application. The equivalent simulation circuits for HRS(high resistance state) and LRS(low resistance state) were also studied by impedance spectroscopy.展开更多
Some hymecromone derivatives containing chiral 1,1'-bi-2-naphthyl moiety were synthesized and their photodimerizations were investigated. It was found that fluorescence intensity and optical rotation of the new ch...Some hymecromone derivatives containing chiral 1,1'-bi-2-naphthyl moiety were synthesized and their photodimerizations were investigated. It was found that fluorescence intensity and optical rotation of the new chiral hymecromone derivatives could be regulated by light. This property has potential significance for developing a new type of dual-mode molecular switch.展开更多
ZnMn_2O_4 thin films were deposited by a sol-gel technique onto a p+-Si substrate, and a RRAM device with the Ag/ZnMn_2O_4/p^+-Si structure was fabricated. The microstructure of ZnMn_2O_4 films and the resistive switc...ZnMn_2O_4 thin films were deposited by a sol-gel technique onto a p+-Si substrate, and a RRAM device with the Ag/ZnMn_2O_4/p^+-Si structure was fabricated. The microstructure of ZnMn_2O_4 films and the resistive switching behavior of Ag/ZnMn_2O_4/p^+-Si device were investigated. ZnMn_2O_4 thin films had a spinel structure after annealing at 650 °C for 1 h. The Ag/ZnMn_2O_4/p^+-Si device showed unipolar and/or bipolar resistive switching behavior, exhibiting different ION/IOFF ratio and switching endurance properties. In bipolar resistive switching, high-resistance-state(HRS) conduction was dominated by the space-charge-limited conduction mechanism, whereas the filament conduction mechanism dictated the low resistance state(LRS). For unipolar resistive switching, HRS and LRS were controlled by the filament conduction mechanism. For bipolar resistive switching, the conduction process can be explained by the space-charge region of the p-n junction.展开更多
The two-dimensional(2D)material-based thermal switch is attracting attention due to its novel applications,such as energy conversion and thermal management,in nanoscale devices.In this paper,we observed that the rever...The two-dimensional(2D)material-based thermal switch is attracting attention due to its novel applications,such as energy conversion and thermal management,in nanoscale devices.In this paper,we observed that the reversible 2H–1T′phase transition in MoTe_(2)is associated with about a fourfold/tenfold change in thermal conductivity along the X/Y direction by using first-principles calculations.This phenomenon can be profoundly understood by comparing the Mo–Te bonding strength between the two phases.The 2H-MoTe_(2)has one stronger bonding type,while 1T′-MoTe_(2)has three weaker types of bonds,suggesting bonding inhomogeneity in 1T′-MoTe_(2).Meanwhile,the bonding inhomogeneity can induce more scattering of vibration modes.The weaker bonding indicates a softer structure,resulting in lower phonon group velocity,a shorter phonon relaxation lifetime and larger Gr¨uneisen constants.The impact caused by the 2H to 1T′phase transition in MoTe_(2)hinders the propagation of phonons,thereby reducing thermal conductivity.Our study describes the possibility for the provision of the MoTe_(2)-based controllable and reversible thermal switch device.展开更多
Resistive switching(RS)devices have great application prospects in the emerging memory field and neuromorphic field,but their stability and unclear RS mechanism limit their relevant applications.In this work,we constr...Resistive switching(RS)devices have great application prospects in the emerging memory field and neuromorphic field,but their stability and unclear RS mechanism limit their relevant applications.In this work,we construct a hydrogenated Au/SnO_(2)nanowire(NW)/Au device with two back-to-back Schottky diodes and investigate the RS characteristics in air and vacuum.We find that the Ion/Io ff ratio increases from 20 to 10^(4)when the read voltage decreases from 3.1 V to^(-1)V under the condition of electric field.Moreover,the rectification ratio can reach as high as 10^4owing to oxygen ion migration modulated by the electric field.The nanodevice also shows non-volatile resistive memory characteristic.The RS mechanism is clarified based on the changes of the Schottky barrier width and height at the interface of Au/SnO_(2)NW/Au device.Our results provide a strategy for designing high-performance memristive devices based on SnO_(2)NWs.展开更多
The current interruption capability of a gas, when used in high voltage gas-blast circuit breakers,depends not only on its material properties but also the flow field since turbulence plays a dominant role in arc cool...The current interruption capability of a gas, when used in high voltage gas-blast circuit breakers,depends not only on its material properties but also the flow field since turbulence plays a dominant role in arc cooling during the interruption process. Based on available experimental results, a study of CO2 switching arcs under a DC(direct current) current in the model circuit breaker has been conducted to calibrate CO2 arc model and to analyse its electric and thermal property. Through detailed analysis of the results mechanisms responsible for the temperature distribution are identified and the domain energy transportation process of different region discussed. The present work provides significant coefficients for CO2 switching arc simulation and gives a better understanding of CO2 arc burning mechanisms.展开更多
Ionosphere layer is the atmosphere region which reflects radio waves for telecommunication. The density in particles in this layer influences the quality of communication. This study deals with the effects of Total El...Ionosphere layer is the atmosphere region which reflects radio waves for telecommunication. The density in particles in this layer influences the quality of communication. This study deals with the effects of Total Electron Contents (TEC) on the critical frequency of radio waves in the F2-layer. Total Electron Contents parameter symbolizes electron bulk surface density in ionosphere layer. Above critical frequency value in F2 layer (foF2), radio waves pass through ionosphere. The knowledge of this value enables to calibrate transmission frequencies. In this study, we consider TEC effects on foF2 under quiet time conditions during the maximum and the minimum of solar cycle 22, at Ouagadougou station, in West Africa. The study also considers the effects of seasons and the hourly variability of TEC and foF2. This work shows winter anomaly on foF2 and TEC on minimum and maximum of solar cycle phase respectively. Running International Reference Ionosphere (IRI) model enables to carry out the effects of TEC on foF2 by use of their monthly average values. This leads to a new approach to calibrate radio transmitters.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.12274108)the Natural Science Foundation of Zhejiang Province,China (Grant Nos.LY23A040008 and LY23A040008)the Basic Scientific Research Project of Wenzhou,China (Grant No.G20220025)。
文摘Field-free spin-orbit torque(SOT)switching of perpendicular magnetization is essential for future spintronic devices.This study demonstrates the field-free switching of perpendicular magnetization in an HfO_(2)/Pt/Co/TaO_(x) structure,which is facilitated by a wedge-shaped HfO_(2)buffer layer.The field-free switching ratio varies with HfO_(2)thickness,reaching optimal performance at 25 nm.This phenomenon is attributed to the lateral anisotropy gradient of the Co layer,which is induced by the wedge-shaped HfO_(2)buffer layer.The thickness gradient of HfO_(2)along the wedge creates a corresponding lateral anisotropy gradient in the Co layer,correlating with the switching ratio.These findings indicate that field-free SOT switching can be achieved through designing buffer layer,offering a novel approach to innovating spin-orbit device.
文摘The polarization switching plays a crucial role in controlling the final products in the catalytic pro-cess.The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal atoms to form active centers on ferroelectric material In_(2)Se_(3).During the polariza-tion switching process,the difference in surface electrostatic potential leads to a redistribution of electronic states.This affects the interaction strength between the adsorbed small molecules and the catalyst substrate,thereby altering the reaction barrier.In addition,the surface states must be considered to prevent the adsorption of other small molecules(such as *O,*OH,and *H).Further-more,the V@↓-In_(2)Se_(3) possesses excellent catalytic properties,high electrochemical and thermody-namic stability,which facilitates the catalytic process.Machine learning also helps us further ex-plore the underlying mechanisms.The systematic investigation provides novel insights into the design and application of two-dimensional switchable ferroelectric catalysts for various chemical processes.
基金Project (51478477) supported by the National Natural Science Foundation of ChinaProject (2016CX012) supported by the Innovation-Driven Project of Central South University,ChinaProject (2014122006) supported by the Guizhou Provincial Department of Transportation Foundation,China
文摘Based on the nonlinear Mohr-Coulomb failure criterion and an associated flow rule,a kinematic admissible velocity field of failure mechanism of the 2-layer soil above a shallow horizontal strip anchor plate is constructed.The ultimate pull-out force and its corresponding failure mechanism through the upper bound limit analysis according to a variation principle are deduced.When the 2-layer overlying soil is degraded into single-layer soil,the model of ultimate pullout force could also be degraded into the model of single-layer soil.And the comparison between results of single-layer soil variation method and those calculated by rigid limit analysis method proves the correctness of our method.Based on that,the influence of changes of geotechnical parameters on ultimate pullout forces and failure mechanism of a shallow horizontal strip anchor with the 2-layer soil above are analyzed.The results show that the ultimate pull-out force and failure mechanism of a shallow horizontal strip anchor with the 2-layer soil above are affected by the nonlinear geotechnical parameters greatly.Thus,it is very important to obtain the accurate geotechnical parameters of 2-layer soil for the evaluation of the ultimate pullout capacity of the anchor plate.
基金financially supported by the"Strategic Priority Research Program"of Chinese Academy of Sciences(No.XDA09030101)the National Natural Science Foundation of China(No.21103181 and 21473185)+1 种基金DICP Fundamental Research Program for Clean Energy(DICP M201301)Shaanxi Yanchang Petroleum Group Co.Ltd
文摘Long-term stability test of Mo/HZSM-5-N catalysts(HZSM-5-N stands for nano-sized HZSM-5) in methane dehydroaromatization(MDA)reaction has been performed with periodic CH4-H2 switch at 1033-1073 K for more than 1000 h.During this test,methane conversion ranges from 13% to 16%,and mean yield to aromatics(i.e.benzene and naphthalene) exceeds 10%.N2-physisorption,XRD,NMR and TPO measurements were performed for the used Mo/HZSM-5 catalysts and coke deposition,and the results revealed that the periodic hydrogenation can effectively suppress coke deposition by removing the inert aromatic-type coke,thus ensuring Mo/HZSM-5 partly maintained its activity even in the presence of large amount of coke deposition.The effect of zeolite particle size on the catalytic activity was also explored,and the results showed that the nano-sized zeolite with low diffusion resistance performed better.It is recognized that the size effect was enhanced by reaction time,and it became more remarkable in a long-term MDA reaction even at a low space velocity.
基金supported by the Natural Sciences and Engineering Research Council(NSERC)of CanadaThe financial support of the State Scholarship Fund of China(No.201506160061)
文摘The resistive switching characteristics of TiO_2 nanowire networks directly grown on Ti foil by a single-step hydrothermal technique are discussed in this paper. The Ti foil serves as the supply of Ti atoms for growth of the TiO_2 nanowires, making the preparation straightforward. It also acts as a bottom electrode for the device. A top Al electrode was fabricated by e-beam evaporation process. The Al/TiO_2 nanowire networks/Ti device fabricated in this way displayed a highly repeatable and electroforming-free bipolar resistive behavior with retention for more than 10~4 s and an OFF/ON ratio of approximately 70. The switching mechanism of this Al/TiO_2 nanowire networks/Ti device is suggested to arise from the migration of oxygen vacancies under applied electric field. This provides a facile way to obtain metal oxide nanowire-based Re RAM device in the future.
文摘Agonist binding of A2A adenosine receptor (A2AAR) shows protective effects against inflammatory and immune. Efforts are exerted in understanding the general mechanism and developing A2AAR selectively binding agonists. Using molecular dynamics (MD) simula- tions, we have studied the interactions between A2AAR and its agonist (adenosine), and analyzed the induced dynamic behaviors of the receptor. Key residues interacting with adenosine are identified: A63^2.61,I66^2.64,V84^3.32,L85^3.33,T88^3.36,F168^5.29,M177^5.38,L249^6.51,H250^6.52 and N253^6.55 interacting with adenosine with affinities larger than 0.5 kcal/mol. Moreover, no interaction between adenosine and L167^5.28 is observed, which supports our previous findings that L1675^5.28 is an antagonist specific binding reside. The dynamic be- haviors of agonist bound A2AAR are found to be different from apo-A2AAR in three typical functional switches: (i) tight "ionic lock" forms in adenosine-A2AAR, but it is in equilibrium between formation and breakage in apo-A2AAR; (ii) the "rotamer toggle switch", T88^3.36/F242^6.44/W246^6.48, adopted different rotameric conformations in adenosin-A2AAR and apo-A2AAR; (iii) adenosine-A2AAR has a flexible intracellular loop 2 (IC2) and s-helical IC3, while apo-A2AAR preferred s-helical IC2 and flexible IC3. Our results indicate that agonist binding induced different conformational rearrangements of these characteristic functional switches in adenosine-A2AAR and apo-A2AAR.
基金supported by the Deanship of Scientific Research(DSR)at KFUPM through distinguished professorship project(161065)
文摘This paper addresses an infinite horizon distributed H2/H∞ filtering for discrete-time systems under conditions of bounded power and white stochastic signals. The filter algorithm is designed by computing a pair of gains namely the estimator and the coupling. Herein, we implement a filter to estimate unknown parameters such that the closed-loop multi-sensor accomplishes the desired performances of the proposed H2 and H∞ schemes over a finite horizon. A switched strategy is implemented to switch between the states once the operation conditions have changed due to disturbances. It is shown that the stability of the overall filtering-error system with H2/H∞ performance can be established if a piecewise-quadratic Lyapunov function is properly constructed. A simulation example is given to show the effectiveness of the proposed approach.
文摘This study deals with Peak of electron density in F2-layer sensibility scale during quiet time on solar minimum. Peaks of electron density in F2-layer (NmF2) values at the quietest days are compared to those carried out from the two nearest days (previous and following of quietest day). The study uses International Reference Ionosphere (IRI) for ionosphere modeling. The located station is Ouagadougou, in West Africa. Solar minimum of phase 22 is considered in this study. Using three core principles of ionosphere modeling under IRI running conditions, the study enables to carry out Peak of electron density in F2-layer values during the quietest days of the characteristic months for the four different seasons. These parameters are compared to those of the previous and the following of the quietest days (the day before and following each quietest selected day) at the same hour. The knowledge of NmF2 values at the quietest days and at the two nearest days enables to calculate the relative error that can be made on this parameter. This calculation highlights insignificant relative errors. This means that NmF2 values at the two nearest days of each quietest day on solar minimum can be used for simulating the quietest days’ behavior. NmF2 values obtained by running IRI model have good correlation with those carried out by Thermosphere-Ionosphere-Electrodynamics-General Circulation Model (TIEGCM).
基金National Natural Science Foundation of China,Grant/Award Number:21805166111 Project of China,Grant/Award Number:D20015+1 种基金Ministryof Education,Hubei province,China,Grant/Award Number:T2020004Foundation of Science and Technology Bureau of Yichang City,Grant/Award Number:A21‐3‐012。
文摘In spite of the numerous advances in the development of H_(2)and O_(2)evolutions upon water splitting,the separation of H_(2)from O_(2)still remains a severe challenge.Herein,the novel dual-functional nanocatalysts Pd/carbon nanosphere(CNS),obtained via immobilization of ultrafine Pd nanoparticles onto CNS,are developed and employed for both selective H_(2)generation from HCOOH dehydrogenation and O_(2)evolution from H_(2)O_(2)decomposition.In these reactions,the highest activities for Pd/CNS-800(i.e.,calcinated at 800℃)are 2478 h−1 and 993 min^(−1)for H_(2)and O_(2)evolution,respectively.The highly efficient and selective“on-off”switch for selective H_(2)generation from HCOOH is successfully realized by pH adjustment.This novel and highly efficient nanocatalyst Pd/CNS-800 not only provides new approaches for the promising application of HCOOH and H_(2)O_(2)as economic and safe H_(2)and O_(2)carriers,respectively,for fuel cells,but also promotes the development of“on-off”switch for on-demand H_(2)evolution.
基金Funded by the National Natural Science Foundation of China(51262003)the Guangxi Key Laboratory of Information Materials(Guilin University of Electronic Technology),China(No.1110908-10-Z)
文摘ZnMn_2O_4 films for resistance random access memory(RRAM) were fabricated with different device structures by magnetron sputtering. The effects of electrode on I-V characteristics, resistance switching behavior, endurance and retention characteristics of ZnMn_2O_4 films were investigated. The ZnMn_2O_4 films, using p-Si and Pt as bottom electrode, exhibit bipolar resistive switching(BRS) behavior dominated by the space-charge-limited conduction(SCLC) mechanism in the high resistance state(HRS) and the filament conduction mechanism in the low resistance state(LRS), but the ZnMn_2O_4 films using n-Si as bottom electrodes exhibit both bipolar and unipolar resistive switching behaviors controlled by the Poole-Frenkel(P-F) conduction mechanism in both HRS and LRS. Ag/ZnMn_2O_4/p-Si device possesses the best endurance and retention characteristics, in which the number of stable repetition switching cycle is over 1000 and the retention time is longer than 106 seconds. However, the highest RHRS/R_(LRS) ratio of 104 and the lowest V_(ON) and V_(OFF) of 3.0 V have been observed in Ag/ZnMn_2O_4/Pt device. Though the Ag/ZnMn_2O_4/n-Si device also possesses the highest RHRS/R_(LRS) ratio of 104, but the highest values of V_(ON),V_(OFF), RHRS and R_(LRS), as well as the poor endurance and retention characteristics.
基金Funded by the National Natural Science Foundation of China(No.51262003)the Guangxi Key Laboratory of Information Materials(Guilin University of Electronic Technology),China(No.1110908-10-Z)
文摘The Ag/Mg0.2Zn0.8O/ZnMn2O4/p^+-Si heterostructure devices were fabricated by sol-gel spin coating technique and the resistive switching behavior,conduction mechanism,endurance characteristic,and retention properties were investigated.A distinct bipolar resistive switching behavior of the devices was observed at room temperature.The resistance ratio R_(HRS)/RLRS of high resistance state and low resistance state is as large as four orders of magnitude with a readout voltage of 2.0 V.The dominant conduction mechanism of the device is trap-controlled space charge limited current(SCLC).The devices exhibit good durability under 1×10^3cycles and the degradation is invisible for more than 10^6 s.
基金Funded by the National Natural Science Foundation of China(51262003)the Guangxi Key Laboratory of Information Materials(Guilin University of Electronic Technology),China(No.1110908-10-Z)
文摘A resistance random access memory(RRAM) with a structure of Ag/ZnMn2O4/p-Si was fabricated by magnetron sputtering method. Reliable and repeated switching of the resistance of ZnMn2O4 fi lms was obtained between two well-defi ned states of high and low resistance with a narrow dispersion and 3V switching voltages. Resistance ratio of the high resistance state and low resistance state was found in the range of around 10^3 orders of magnitude and up to about 10^3 test cycles. The retention time of Ag/ZnMn2O4/p-Si device is longer than 10^6 seconds and the resistance ratio between two states remains higher than 10^3 at room temperature, showing a remarkable reliability performance of the RRAM devices for nonvolatile memory application. The equivalent simulation circuits for HRS(high resistance state) and LRS(low resistance state) were also studied by impedance spectroscopy.
文摘Some hymecromone derivatives containing chiral 1,1'-bi-2-naphthyl moiety were synthesized and their photodimerizations were investigated. It was found that fluorescence intensity and optical rotation of the new chiral hymecromone derivatives could be regulated by light. This property has potential significance for developing a new type of dual-mode molecular switch.
基金Funded by the National Natural Science Foundation of China(No.51262003)the Guangxi Key Laboratory of Information Materials(Guilin University of Electronic Technology),China(No.1110908-10-Z)
文摘ZnMn_2O_4 thin films were deposited by a sol-gel technique onto a p+-Si substrate, and a RRAM device with the Ag/ZnMn_2O_4/p^+-Si structure was fabricated. The microstructure of ZnMn_2O_4 films and the resistive switching behavior of Ag/ZnMn_2O_4/p^+-Si device were investigated. ZnMn_2O_4 thin films had a spinel structure after annealing at 650 °C for 1 h. The Ag/ZnMn_2O_4/p^+-Si device showed unipolar and/or bipolar resistive switching behavior, exhibiting different ION/IOFF ratio and switching endurance properties. In bipolar resistive switching, high-resistance-state(HRS) conduction was dominated by the space-charge-limited conduction mechanism, whereas the filament conduction mechanism dictated the low resistance state(LRS). For unipolar resistive switching, HRS and LRS were controlled by the filament conduction mechanism. For bipolar resistive switching, the conduction process can be explained by the space-charge region of the p-n junction.
基金the China Scholarship Council(Grant No.202107000030)RIE2020 Advanced Manufacturing and Engineering(AME)Programmatic(Grant No.A1898b0043)A*STAR Aerospace Programme(Grant No.M2115a0092)。
文摘The two-dimensional(2D)material-based thermal switch is attracting attention due to its novel applications,such as energy conversion and thermal management,in nanoscale devices.In this paper,we observed that the reversible 2H–1T′phase transition in MoTe_(2)is associated with about a fourfold/tenfold change in thermal conductivity along the X/Y direction by using first-principles calculations.This phenomenon can be profoundly understood by comparing the Mo–Te bonding strength between the two phases.The 2H-MoTe_(2)has one stronger bonding type,while 1T′-MoTe_(2)has three weaker types of bonds,suggesting bonding inhomogeneity in 1T′-MoTe_(2).Meanwhile,the bonding inhomogeneity can induce more scattering of vibration modes.The weaker bonding indicates a softer structure,resulting in lower phonon group velocity,a shorter phonon relaxation lifetime and larger Gr¨uneisen constants.The impact caused by the 2H to 1T′phase transition in MoTe_(2)hinders the propagation of phonons,thereby reducing thermal conductivity.Our study describes the possibility for the provision of the MoTe_(2)-based controllable and reversible thermal switch device.
基金Chenzhou Science and Technology Plan Project of China(Grant No.ZDYF2020159)Scientific Research Project of Hunan Provincial Department of Education(Grant No.21C0708)。
文摘Resistive switching(RS)devices have great application prospects in the emerging memory field and neuromorphic field,but their stability and unclear RS mechanism limit their relevant applications.In this work,we construct a hydrogenated Au/SnO_(2)nanowire(NW)/Au device with two back-to-back Schottky diodes and investigate the RS characteristics in air and vacuum.We find that the Ion/Io ff ratio increases from 20 to 10^(4)when the read voltage decreases from 3.1 V to^(-1)V under the condition of electric field.Moreover,the rectification ratio can reach as high as 10^4owing to oxygen ion migration modulated by the electric field.The nanodevice also shows non-volatile resistive memory characteristic.The RS mechanism is clarified based on the changes of the Schottky barrier width and height at the interface of Au/SnO_(2)NW/Au device.Our results provide a strategy for designing high-performance memristive devices based on SnO_(2)NWs.
基金supported by National Natural Science Foundation of China(Grant No.51337006)
文摘The current interruption capability of a gas, when used in high voltage gas-blast circuit breakers,depends not only on its material properties but also the flow field since turbulence plays a dominant role in arc cooling during the interruption process. Based on available experimental results, a study of CO2 switching arcs under a DC(direct current) current in the model circuit breaker has been conducted to calibrate CO2 arc model and to analyse its electric and thermal property. Through detailed analysis of the results mechanisms responsible for the temperature distribution are identified and the domain energy transportation process of different region discussed. The present work provides significant coefficients for CO2 switching arc simulation and gives a better understanding of CO2 arc burning mechanisms.
文摘Ionosphere layer is the atmosphere region which reflects radio waves for telecommunication. The density in particles in this layer influences the quality of communication. This study deals with the effects of Total Electron Contents (TEC) on the critical frequency of radio waves in the F2-layer. Total Electron Contents parameter symbolizes electron bulk surface density in ionosphere layer. Above critical frequency value in F2 layer (foF2), radio waves pass through ionosphere. The knowledge of this value enables to calibrate transmission frequencies. In this study, we consider TEC effects on foF2 under quiet time conditions during the maximum and the minimum of solar cycle 22, at Ouagadougou station, in West Africa. The study also considers the effects of seasons and the hourly variability of TEC and foF2. This work shows winter anomaly on foF2 and TEC on minimum and maximum of solar cycle phase respectively. Running International Reference Ionosphere (IRI) model enables to carry out the effects of TEC on foF2 by use of their monthly average values. This leads to a new approach to calibrate radio transmitters.