The rapid advancement of communication and satellite technology drives broadband satellite networks to carry different traffic loads.However,traffic class routing of satellite cannot be provided by the existing 2-laye...The rapid advancement of communication and satellite technology drives broadband satellite networks to carry different traffic loads.However,traffic class routing of satellite cannot be provided by the existing 2-layerd satellite networks.In this paper,a 2-layered satellite network composed of low-Earth orbit and medium-Earth orbit satellite networks is presented,and a novel Self-adapting Routing Protocol(SRP)is developed.This scheme aims to adopt self-adapting routing algorithm to support different traffic classes.Meanwhile,the path discovery processing is invoked independently for each individual origin/destination pair.Simulation results are provided to evaluate the performance of the new scheme in terms of end-to-end delay,normalized data throughput,delay jitter and delivery ratio.展开更多
Based on the nonlinear Mohr-Coulomb failure criterion and an associated flow rule,a kinematic admissible velocity field of failure mechanism of the 2-layer soil above a shallow horizontal strip anchor plate is constru...Based on the nonlinear Mohr-Coulomb failure criterion and an associated flow rule,a kinematic admissible velocity field of failure mechanism of the 2-layer soil above a shallow horizontal strip anchor plate is constructed.The ultimate pull-out force and its corresponding failure mechanism through the upper bound limit analysis according to a variation principle are deduced.When the 2-layer overlying soil is degraded into single-layer soil,the model of ultimate pullout force could also be degraded into the model of single-layer soil.And the comparison between results of single-layer soil variation method and those calculated by rigid limit analysis method proves the correctness of our method.Based on that,the influence of changes of geotechnical parameters on ultimate pullout forces and failure mechanism of a shallow horizontal strip anchor with the 2-layer soil above are analyzed.The results show that the ultimate pull-out force and failure mechanism of a shallow horizontal strip anchor with the 2-layer soil above are affected by the nonlinear geotechnical parameters greatly.Thus,it is very important to obtain the accurate geotechnical parameters of 2-layer soil for the evaluation of the ultimate pullout capacity of the anchor plate.展开更多
This study deals with Peak of electron density in F2-layer sensibility scale during quiet time on solar minimum. Peaks of electron density in F2-layer (NmF2) values at the quietest days are compared to those carried o...This study deals with Peak of electron density in F2-layer sensibility scale during quiet time on solar minimum. Peaks of electron density in F2-layer (NmF2) values at the quietest days are compared to those carried out from the two nearest days (previous and following of quietest day). The study uses International Reference Ionosphere (IRI) for ionosphere modeling. The located station is Ouagadougou, in West Africa. Solar minimum of phase 22 is considered in this study. Using three core principles of ionosphere modeling under IRI running conditions, the study enables to carry out Peak of electron density in F2-layer values during the quietest days of the characteristic months for the four different seasons. These parameters are compared to those of the previous and the following of the quietest days (the day before and following each quietest selected day) at the same hour. The knowledge of NmF2 values at the quietest days and at the two nearest days enables to calculate the relative error that can be made on this parameter. This calculation highlights insignificant relative errors. This means that NmF2 values at the two nearest days of each quietest day on solar minimum can be used for simulating the quietest days’ behavior. NmF2 values obtained by running IRI model have good correlation with those carried out by Thermosphere-Ionosphere-Electrodynamics-General Circulation Model (TIEGCM).展开更多
Ionosphere layer is the atmosphere region which reflects radio waves for telecommunication. The density in particles in this layer influences the quality of communication. This study deals with the effects of Total El...Ionosphere layer is the atmosphere region which reflects radio waves for telecommunication. The density in particles in this layer influences the quality of communication. This study deals with the effects of Total Electron Contents (TEC) on the critical frequency of radio waves in the F2-layer. Total Electron Contents parameter symbolizes electron bulk surface density in ionosphere layer. Above critical frequency value in F2 layer (foF2), radio waves pass through ionosphere. The knowledge of this value enables to calibrate transmission frequencies. In this study, we consider TEC effects on foF2 under quiet time conditions during the maximum and the minimum of solar cycle 22, at Ouagadougou station, in West Africa. The study also considers the effects of seasons and the hourly variability of TEC and foF2. This work shows winter anomaly on foF2 and TEC on minimum and maximum of solar cycle phase respectively. Running International Reference Ionosphere (IRI) model enables to carry out the effects of TEC on foF2 by use of their monthly average values. This leads to a new approach to calibrate radio transmitters.展开更多
Vegetation fractional coverage (VFC) is one of the key indicators of vegetation distribution. In the work a measurement-based model was developed to derive total forest VFC (TG) as well as the VFC of trees (T) and shr...Vegetation fractional coverage (VFC) is one of the key indicators of vegetation distribution. In the work a measurement-based model was developed to derive total forest VFC (TG) as well as the VFC of trees (T) and shrub-grasses (G) separately in a subtropical forest area in Nanjing, China. Both upward and downward photographs were taken with a digital camera in 72 quadrats (10 m × 10 m each). Fifteen models were established and validated. Models jointly using both T and G performed better than those using the T and G separately. The best model, TG = T + G- 1.134 × T × G- 0.025 (R2 = 0.9115, P < 0.01, root mean squared error = 0.0789), is recommended for application. This model provides a good way to obtain total forest VFC values through taking tree and shrub-grass photos on ground below tree canopy rather than above tree canopy.展开更多
The large-scale upper oceanic circulation in the South China Sea (SCS) during the northeast monsoon was investigited using a 2 1/2-layer model inrolving entrainment and detraininent at the interface between the upper ...The large-scale upper oceanic circulation in the South China Sea (SCS) during the northeast monsoon was investigited using a 2 1/2-layer model inrolving entrainment and detraininent at the interface between the upper mixed layer and the seasonal thermocline. The model allows heat fluxes at the surface and at the interfaee with a reaxation scheme, the temperatures of the two active layers can vary. The model basin is idenical to the SCS lateral boundary with bottom topography of 50 m or more and is regarded as an enclosed basin by neglecting inflow and outflow through the straits, and is forced by the climetological wind stna of 12 calendar months. It was found tha the upper oceanic currents in winter were mainly wind-driven. Most aspects of streams reported by observations were simulated with eddyresolving.展开更多
A two and a half layer oceanic model of wind-driven, thermodynamical general circulation is appliedto study the interannual oscillation of sea surface temperature (SST) in the South China Sea (SCS). Themodel consists ...A two and a half layer oceanic model of wind-driven, thermodynamical general circulation is appliedto study the interannual oscillation of sea surface temperature (SST) in the South China Sea (SCS). Themodel consists of two active layers: the upper mixed layer (UML) and the seasonal thermocline, with themotionless abyss beneath them. The governing equations which include momentum, continuity and sea.temperature for each active layer, can describe the physics of Boussinseq approximation, reduced gravityand equatorial β-plane. The formulas for the heat flux at the surface and at the interface between twoactive layers are designed on the Haney scheme. The entrainment and detrainment at the bottom of theUML induces vertical transport of mass,momentum and heat, and couples of dynamic andthermodynamic effect.Using leap-frog integrating scheme and the Arakawa-C grid the model is forced bya time-dependent wind anomaly stress pattern obtained from category analysis of COADS. The numerical results indicate that展开更多
We explore the impact of edge states in three types of transition metal dichalcogenides (TMDs), namely metallic Td-phase WTe2 and semiconducting 2H-phase MoTe2 and MoS2, by patterning thin flakes into ribbons with v...We explore the impact of edge states in three types of transition metal dichalcogenides (TMDs), namely metallic Td-phase WTe2 and semiconducting 2H-phase MoTe2 and MoS2, by patterning thin flakes into ribbons with varying channel widths. No obvious charge depletion at the edges is observed for any of these three materials, in contrast to observations made for graphene nanoribbon devices. The semiconducting ribbons are characterized in a three-terminal field-effect transistor (FET) geometry. In addition, two ribbon array designs have been carefully investigated and found to exhibit current levels higher than those observed for conventional one-channel devices. Our results suggest that device structures incorporating a high number of edges can improve the performance of TMD FETs. This improvement is attributed to a higher local electric field, resulting from the edges, increasing the effective number of charge carriers, and the absence of any detrimental edge-related scattering.展开更多
基金the Major Program of National Natural Science Foundation of China under Grant No. 60872041Natural Science Foundation of Guangdong Province under Grant No.10152104101000004the Fundamental Research Funds for the Central Universities under Grant No. JY10000970009
文摘The rapid advancement of communication and satellite technology drives broadband satellite networks to carry different traffic loads.However,traffic class routing of satellite cannot be provided by the existing 2-layerd satellite networks.In this paper,a 2-layered satellite network composed of low-Earth orbit and medium-Earth orbit satellite networks is presented,and a novel Self-adapting Routing Protocol(SRP)is developed.This scheme aims to adopt self-adapting routing algorithm to support different traffic classes.Meanwhile,the path discovery processing is invoked independently for each individual origin/destination pair.Simulation results are provided to evaluate the performance of the new scheme in terms of end-to-end delay,normalized data throughput,delay jitter and delivery ratio.
基金Project (51478477) supported by the National Natural Science Foundation of ChinaProject (2016CX012) supported by the Innovation-Driven Project of Central South University,ChinaProject (2014122006) supported by the Guizhou Provincial Department of Transportation Foundation,China
文摘Based on the nonlinear Mohr-Coulomb failure criterion and an associated flow rule,a kinematic admissible velocity field of failure mechanism of the 2-layer soil above a shallow horizontal strip anchor plate is constructed.The ultimate pull-out force and its corresponding failure mechanism through the upper bound limit analysis according to a variation principle are deduced.When the 2-layer overlying soil is degraded into single-layer soil,the model of ultimate pullout force could also be degraded into the model of single-layer soil.And the comparison between results of single-layer soil variation method and those calculated by rigid limit analysis method proves the correctness of our method.Based on that,the influence of changes of geotechnical parameters on ultimate pullout forces and failure mechanism of a shallow horizontal strip anchor with the 2-layer soil above are analyzed.The results show that the ultimate pull-out force and failure mechanism of a shallow horizontal strip anchor with the 2-layer soil above are affected by the nonlinear geotechnical parameters greatly.Thus,it is very important to obtain the accurate geotechnical parameters of 2-layer soil for the evaluation of the ultimate pullout capacity of the anchor plate.
文摘This study deals with Peak of electron density in F2-layer sensibility scale during quiet time on solar minimum. Peaks of electron density in F2-layer (NmF2) values at the quietest days are compared to those carried out from the two nearest days (previous and following of quietest day). The study uses International Reference Ionosphere (IRI) for ionosphere modeling. The located station is Ouagadougou, in West Africa. Solar minimum of phase 22 is considered in this study. Using three core principles of ionosphere modeling under IRI running conditions, the study enables to carry out Peak of electron density in F2-layer values during the quietest days of the characteristic months for the four different seasons. These parameters are compared to those of the previous and the following of the quietest days (the day before and following each quietest selected day) at the same hour. The knowledge of NmF2 values at the quietest days and at the two nearest days enables to calculate the relative error that can be made on this parameter. This calculation highlights insignificant relative errors. This means that NmF2 values at the two nearest days of each quietest day on solar minimum can be used for simulating the quietest days’ behavior. NmF2 values obtained by running IRI model have good correlation with those carried out by Thermosphere-Ionosphere-Electrodynamics-General Circulation Model (TIEGCM).
文摘Ionosphere layer is the atmosphere region which reflects radio waves for telecommunication. The density in particles in this layer influences the quality of communication. This study deals with the effects of Total Electron Contents (TEC) on the critical frequency of radio waves in the F2-layer. Total Electron Contents parameter symbolizes electron bulk surface density in ionosphere layer. Above critical frequency value in F2 layer (foF2), radio waves pass through ionosphere. The knowledge of this value enables to calibrate transmission frequencies. In this study, we consider TEC effects on foF2 under quiet time conditions during the maximum and the minimum of solar cycle 22, at Ouagadougou station, in West Africa. The study also considers the effects of seasons and the hourly variability of TEC and foF2. This work shows winter anomaly on foF2 and TEC on minimum and maximum of solar cycle phase respectively. Running International Reference Ionosphere (IRI) model enables to carry out the effects of TEC on foF2 by use of their monthly average values. This leads to a new approach to calibrate radio transmitters.
基金Supported by the National Basic Research Program (973 Program) of China (No.2007CB407206)the National Natural Science Foundation of China (No.40371053)
文摘Vegetation fractional coverage (VFC) is one of the key indicators of vegetation distribution. In the work a measurement-based model was developed to derive total forest VFC (TG) as well as the VFC of trees (T) and shrub-grasses (G) separately in a subtropical forest area in Nanjing, China. Both upward and downward photographs were taken with a digital camera in 72 quadrats (10 m × 10 m each). Fifteen models were established and validated. Models jointly using both T and G performed better than those using the T and G separately. The best model, TG = T + G- 1.134 × T × G- 0.025 (R2 = 0.9115, P < 0.01, root mean squared error = 0.0789), is recommended for application. This model provides a good way to obtain total forest VFC values through taking tree and shrub-grass photos on ground below tree canopy rather than above tree canopy.
文摘The large-scale upper oceanic circulation in the South China Sea (SCS) during the northeast monsoon was investigited using a 2 1/2-layer model inrolving entrainment and detraininent at the interface between the upper mixed layer and the seasonal thermocline. The model allows heat fluxes at the surface and at the interfaee with a reaxation scheme, the temperatures of the two active layers can vary. The model basin is idenical to the SCS lateral boundary with bottom topography of 50 m or more and is regarded as an enclosed basin by neglecting inflow and outflow through the straits, and is forced by the climetological wind stna of 12 calendar months. It was found tha the upper oceanic currents in winter were mainly wind-driven. Most aspects of streams reported by observations were simulated with eddyresolving.
文摘A two and a half layer oceanic model of wind-driven, thermodynamical general circulation is appliedto study the interannual oscillation of sea surface temperature (SST) in the South China Sea (SCS). Themodel consists of two active layers: the upper mixed layer (UML) and the seasonal thermocline, with themotionless abyss beneath them. The governing equations which include momentum, continuity and sea.temperature for each active layer, can describe the physics of Boussinseq approximation, reduced gravityand equatorial β-plane. The formulas for the heat flux at the surface and at the interface between twoactive layers are designed on the Haney scheme. The entrainment and detrainment at the bottom of theUML induces vertical transport of mass,momentum and heat, and couples of dynamic andthermodynamic effect.Using leap-frog integrating scheme and the Arakawa-C grid the model is forced bya time-dependent wind anomaly stress pattern obtained from category analysis of COADS. The numerical results indicate that
文摘We explore the impact of edge states in three types of transition metal dichalcogenides (TMDs), namely metallic Td-phase WTe2 and semiconducting 2H-phase MoTe2 and MoS2, by patterning thin flakes into ribbons with varying channel widths. No obvious charge depletion at the edges is observed for any of these three materials, in contrast to observations made for graphene nanoribbon devices. The semiconducting ribbons are characterized in a three-terminal field-effect transistor (FET) geometry. In addition, two ribbon array designs have been carefully investigated and found to exhibit current levels higher than those observed for conventional one-channel devices. Our results suggest that device structures incorporating a high number of edges can improve the performance of TMD FETs. This improvement is attributed to a higher local electric field, resulting from the edges, increasing the effective number of charge carriers, and the absence of any detrimental edge-related scattering.