There is an urgent need for low-cost,high-energy-density,environmentally friendly energy storage devices to fulfill the rapidly increasing need for electrical energy storage.Multi-electron redox is considerably crucia...There is an urgent need for low-cost,high-energy-density,environmentally friendly energy storage devices to fulfill the rapidly increasing need for electrical energy storage.Multi-electron redox is considerably crucial for the development of high-energy-density cathodes.Here we present highperformance aqueous zinc-manganese batteries with reversible Mn2+/Mn4+ double redox.The active Mn4+is generated in situ from the Mn2+-containing MnOx nanoparticles and electrolyte.Benefitting from the low crystallinity of the birnessite-type MnO2 as well as the electrolyte with Mn2+additive,the MnOX cathode achieves an ultrahigh energy density with a peak of845.1 Wh kg-1 and an ultralong lifespan of 1500 cycles.The combination of electrochemical measurements and material characterization reveals the reversible Mn2+/Mn4+double redox(birnessite-type MnO2? monoclinic MnOOH and spinel ZnMn2O4 H?Mn2+ions).The reversible Mn2+/Mn4+double redox electrode reaction mechanism offers new opportunities for the design of low-cost,high-energy-density cathodes for advanced rechargeable aqueous batteries.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51772331)the National Key Technologies R&D Program(Grant No.2018YFB1106000).
文摘There is an urgent need for low-cost,high-energy-density,environmentally friendly energy storage devices to fulfill the rapidly increasing need for electrical energy storage.Multi-electron redox is considerably crucial for the development of high-energy-density cathodes.Here we present highperformance aqueous zinc-manganese batteries with reversible Mn2+/Mn4+ double redox.The active Mn4+is generated in situ from the Mn2+-containing MnOx nanoparticles and electrolyte.Benefitting from the low crystallinity of the birnessite-type MnO2 as well as the electrolyte with Mn2+additive,the MnOX cathode achieves an ultrahigh energy density with a peak of845.1 Wh kg-1 and an ultralong lifespan of 1500 cycles.The combination of electrochemical measurements and material characterization reveals the reversible Mn2+/Mn4+double redox(birnessite-type MnO2? monoclinic MnOOH and spinel ZnMn2O4 H?Mn2+ions).The reversible Mn2+/Mn4+double redox electrode reaction mechanism offers new opportunities for the design of low-cost,high-energy-density cathodes for advanced rechargeable aqueous batteries.